in k8s/spark_tpcbench.py [0:0]
def main(benchmark: str, data_path: str, query_path: str, output_path: str, name: str):
# Initialize a SparkSession
spark = SparkSession.builder \
.appName( f"{name} benchmark derived from {benchmark}") \
.getOrCreate()
spark.conf.set("spark.hadoop.fs.s3a.aws.credentials.provider", "org.apache.hadoop.fs.s3a.SimpleAWSCredentialsProvider")
spark.conf.set("spark.hadoop.fs.s3a.impl", "org.apache.hadoop.fs.s3a.S3AFileSystem")
# Register the tables
num_queries = 22
table_names = [
"customer",
"lineitem",
"nation",
"orders",
"part",
"partsupp",
"region",
"supplier",
]
for table in table_names:
path = f"{data_path}/{table}.parquet"
print(f"Registering table {table} using path {path}")
df = spark.read.parquet(path)
df.createOrReplaceTempView(table)
conf_dict = {k: v for k, v in spark.sparkContext.getConf().getAll()}
results = {
"engine": "spark",
"benchmark": benchmark,
"data_path": data_path,
"query_path": query_path,
"spark_conf": conf_dict,
"queries": {},
}
iter_start_time = time.time()
for query in range(1, num_queries + 1):
spark.sparkContext.setJobDescription(f"{benchmark} q{query}")
# if query == 9:
# continue
# read text file
path = f"{query_path}/q{query}.sql"
# if query == 72:
# # use version with sensible join order
# path = f"{query_path}/q{query}_optimized.sql"
print(f"Reading query {query} using path {path}")
with open(path, "r") as f:
text = f.read()
# each file can contain multiple queries
queries = list(
filter(lambda x: len(x) > 0, map(lambda x: x.strip(), text.split(";")))
)
start_time = time.time()
for sql in queries:
sql = sql.strip().replace("create view", "create temp view")
if len(sql) > 0:
print(f"Executing: {sql}")
df = spark.sql(sql)
rows = df.collect()
end_time = time.time()
out_path = f"{output_path}/{name}_{benchmark}_q{query}_result.txt"
# fIXME: concat output for all queries. For example q15 has multiple
out = df._show_string(100000)
with open(out_path, "w") as f:
f.write(out)
print(f"Query {query} took {end_time - start_time} seconds")
results["queries"][str(query)] = end_time - start_time
print(json.dumps(results, indent=4))
iter_end_time = time.time()
print(f"total took {round(iter_end_time - iter_start_time,2)} seconds")
out = json.dumps(results, indent=4)
current_time_millis = int(datetime.now().timestamp() * 1000)
results_path = f"{output_path}/{name}-{benchmark}-{current_time_millis}.json"
print(f"Writing results to {results_path}")
with open(results_path, "w") as f:
f.write(out)
# Stop the SparkSession
spark.stop()