tpch/tpcbench.py (170 lines of code) (raw):

# Licensed to the Apache Software Foundation (ASF) under one # or more contributor license agreements. See the NOTICE file # distributed with this work for additional information # regarding copyright ownership. The ASF licenses this file # to you under the Apache License, Version 2.0 (the # "License"); you may not use this file except in compliance # with the License. You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, # software distributed under the License is distributed on an # "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY # KIND, either express or implied. See the License for the # specific language governing permissions and limitations # under the License. import argparse import ray from datafusion_ray import DFRayContext, df_ray_runtime_env from datafusion_ray.util import LocalValidator, prettify from datetime import datetime import json import os import time def tpch_query(qnum: int) -> str: query_path = os.path.join(os.path.dirname(__file__), "queries") return open(os.path.join(query_path, f"q{qnum}.sql")).read() def main( qnum: int, data_path: str, concurrency: int, batch_size: int, partitions_per_processor: int | None, processor_pool_min: int, listing_tables: bool, validate: bool, output_path: str, prefetch_buffer_size: int, ): # Register the tables table_names = [ "customer", "lineitem", "nation", "orders", "part", "partsupp", "region", "supplier", ] # Connect to a cluster # use ray job submit ray.init(runtime_env=df_ray_runtime_env) ctx = DFRayContext( batch_size=batch_size, partitions_per_processor=partitions_per_processor, prefetch_buffer_size=prefetch_buffer_size, processor_pool_min=processor_pool_min, processor_pool_max=1000, ) local = LocalValidator() ctx.set("datafusion.execution.target_partitions", f"{concurrency}") # ctx.set("datafusion.execution.parquet.pushdown_filters", "true") ctx.set("datafusion.optimizer.enable_round_robin_repartition", "false") ctx.set("datafusion.execution.coalesce_batches", "false") for table in table_names: path = os.path.join(data_path, f"{table}.parquet") print(f"Registering table {table} using path {path}") if listing_tables: ctx.register_listing_table(table, path) local.register_listing_table(table, path) else: ctx.register_parquet(table, path) local.register_parquet(table, path) current_time_millis = int(datetime.now().timestamp() * 1000) results_path = os.path.join( output_path, f"datafusion-ray-tpch-{current_time_millis}.json" ) print(f"Writing results to {results_path}") results = { "engine": "datafusion-ray", "benchmark": "tpch", "settings": { "concurrency": concurrency, "batch_size": batch_size, "prefetch_buffer_size": prefetch_buffer_size, "partitions_per_processor": partitions_per_processor, }, "data_path": data_path, "queries": {}, } if validate: results["validated"] = {} queries = range(1, 23) if qnum == -1 else [qnum] for qnum in queries: sql = tpch_query(qnum) statements = list( filter( lambda x: len(x) > 0, map(lambda x: x.strip(), sql.split(";")) ) ) start_time = time.time() all_batches = [] for sql in statements: print("executing ", sql) df = ctx.sql(sql) all_batches.append(df.collect()) end_time = time.time() results["queries"][qnum] = end_time - start_time calculated = "\n".join([prettify(b) for b in all_batches]) print(calculated) out_path = os.path.join( output_path, f"datafusion_ray_tpch_q{qnum}_result.txt" ) with open(out_path, "w") as f: f.write(calculated) if validate: all_batches = [] for sql in statements: all_batches.append(local.collect_sql(sql)) expected = "\n".join([prettify(b) for b in all_batches]) results["validated"][qnum] = calculated == expected print(f"done with query {qnum}") # write the results as we go, so you can peek at them results_dump = json.dumps(results, indent=4) with open(results_path, "w+") as f: f.write(results_dump) # write results to stdout print(results_dump) # give ray a moment to clean up print("benchmark complete. sleeping for 3 seconds for ray to clean up") time.sleep(3) if validate and False in results["validated"].values(): # return a non zero return code if we did not validate all queries print("Possible incorrect query result") exit(1) if __name__ == "__main__": parser = argparse.ArgumentParser( description="DataFusion benchmark derived from TPC-H / TPC-DS" ) parser.add_argument("--data", required=True, help="Path to data files") parser.add_argument( "--concurrency", required=True, help="Number of concurrent tasks" ) parser.add_argument( "--qnum", type=int, default=-1, help="TPCH query number, 1-22" ) parser.add_argument("--listing-tables", action="store_true") parser.add_argument("--validate", action="store_true") parser.add_argument( "--log-level", default="INFO", help="ERROR,WARN,INFO,DEBUG,TRACE" ) parser.add_argument( "--batch-size", required=False, default=8192, help="Desired batch size output per stage", ) parser.add_argument( "--partitions-per-processor", type=int, help="partitions per DFRayProcessor", ) parser.add_argument( "--output-path", type=str, default=".", help="directory to write output json", ) parser.add_argument( "--prefetch-buffer-size", required=False, default=0, type=int, help="How many batches each stage should eagerly buffer", ) parser.add_argument( "--processor-pool-min", type=int, help="Minimum number of DFRayProcessors to keep in pool", ) args = parser.parse_args() main( args.qnum, args.data, int(args.concurrency), int(args.batch_size), args.partitions_per_processor, args.processor_pool_min, args.listing_tables, args.validate, args.output_path, args.prefetch_buffer_size, )