include/kernel_function.hpp (55 lines of code) (raw):
/*
* Licensed to the Apache Software Foundation (ASF) under one
* or more contributor license agreements. See the NOTICE file
* distributed with this work for additional information
* regarding copyright ownership. The ASF licenses this file
* to you under the Apache License, Version 2.0 (the
* "License"); you may not use this file except in compliance
* with the License. You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing,
* software distributed under the License is distributed on an
* "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
* KIND, either express or implied. See the License for the
* specific language governing permissions and limitations
* under the License.
*/
#include <nanobind/nanobind.h>
#include <nanobind/trampoline.h>
#include <nanobind/ndarray.h>
#include <nanobind/intrusive/counter.h>
#include <nanobind/intrusive/ref.h>
#include <nanobind/stl/vector.h>
#include <numpy/arrayobject.h>
#ifndef _KERNEL_FUNCTION_HPP_
#define _KERNEL_FUNCTION_HPP_
namespace nb = nanobind;
namespace datasketches {
/**
* @brief kernel_function provides the underlying base class from
* which native Python kernels ultimately inherit. The actual
* kernels implement KernelFunction, as shown in KernelFunction.py
*/
struct kernel_function : public nb::intrusive_base {
virtual double operator()(nb::handle& a, nb::handle& b) const = 0;
virtual ~kernel_function() = default;
};
/**
* @brief KernelFunction provides the "trampoline" class for nanobind
* that allows for a native Python implementation of kernel
* functions.
*/
struct KernelFunction : public kernel_function {
NB_TRAMPOLINE(kernel_function, 1);
/**
* @brief Evaluates K(a,b), the kernel function for the given points a and b
* @param a the first vector
* @param b the second vector
* @return The function value K(a,b)
*/
double operator()(nb::handle& a, nb::handle& b) const override {
NB_OVERRIDE_PURE_NAME(
"__call__", // Name of function in python
operator(), // Name of function in C++
a, b // Arguments
);
}
};
/* The kernel_function_holder provides a concrete class that dispatches calls
* from the sketch to the kernel_function. This class is needed to provide a
* concrete object to produce a compiled library, but library users should
* never need to use this directly.
*/
struct kernel_function_holder {
explicit kernel_function_holder(kernel_function* kernel) : _kernel(kernel) {}
kernel_function_holder(const kernel_function_holder& other) : _kernel(other._kernel) {}
kernel_function_holder(kernel_function_holder&& other) : _kernel(std::move(other._kernel)) {}
kernel_function_holder& operator=(const kernel_function_holder& other) { _kernel = other._kernel; return *this; }
kernel_function_holder& operator=(kernel_function_holder&& other) { std::swap(_kernel, other._kernel); return *this; }
double operator()(const std::vector<double>& a, nb::object& b) const {
const npy_intp size_a[1] { static_cast<npy_int>(a.size()) };
nb::handle a_obj(PyArray_SimpleNewFromData(1, size_a, NPY_DOUBLE, const_cast<double*>(a.data())));
return _kernel->operator()(
a_obj,
b
);
}
double operator()(const std::vector<double>& a, const std::vector<double>& b) const {
const npy_intp size_a[1] { static_cast<npy_int>(a.size()) };
const npy_intp size_b[1] { static_cast<npy_int>(b.size()) };
nb::handle a_obj(PyArray_SimpleNewFromData(1, size_a, NPY_DOUBLE, const_cast<double*>(a.data())));
nb::handle b_obj(PyArray_SimpleNewFromData(1, size_b, NPY_DOUBLE, const_cast<double*>(b.data())));
double val = _kernel->operator()(
a_obj,
b_obj
);
return val;
}
private:
nb::ref<kernel_function> _kernel;
};
}
#endif // _KERNEL_FUNCTION_HPP_