python/src/datasketches_spark/kll.py (68 lines of code) (raw):

# Licensed to the Apache Software Foundation (ASF) under one # or more contributor license agreements. See the NOTICE file # distributed with this work for additional information # regarding copyright ownership. The ASF licenses this file # to you under the Apache License, Version 2.0 (the # "License"); you may not use this file except in compliance # with the License. You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, # software distributed under the License is distributed on an # "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY # KIND, either express or implied. See the License for the # specific language governing permissions and limitations # under the License. from typing import List, Optional, Tuple, Union from py4j.java_gateway import JavaClass from pyspark.sql.column import Column, _to_java_column # possibly fragile from pyspark.sql.functions import lit from pyspark.sql.utils import try_remote_functions from pyspark.sql.types import UserDefinedType, BinaryType from datasketches import kll_doubles_sketch from .common import ( ColumnOrName, _invoke_function, _invoke_function_over_columns, _get_jvm_class, _array_as_java_column ) _kll_functions_class: JavaClass = None def _get_kll_functions_class() -> JavaClass: global _kll_functions_class if _kll_functions_class is None: _kll_functions_class = _get_jvm_class("org.apache.spark.sql.datasketches.kll.functions") return _kll_functions_class class KllDoublesSketchUDT(UserDefinedType): """UDT to translate kll_doubles_sketch to/from spark""" @classmethod def sqlType(cls): return BinaryType() def serialize(self, sketch: kll_doubles_sketch) -> bytes: if sketch is None: return None return sketch.serialize() def deserialize(self, data: bytes) -> kll_doubles_sketch: if data is None: return None return kll_doubles_sketch.deserialize(bytes(data)) @classmethod def module(cls): return "datasketches" @classmethod def scalaUDT(cls): return "org.apache.spark.sql.datasketches.kll.KllDoublesSketchType" @try_remote_functions def kll_sketch_double_agg_build(col: "ColumnOrName", k: Optional[Union[int, Column]] = None) -> Column: if k is None: return _invoke_function_over_columns(_get_kll_functions_class(), "kll_sketch_double_agg_build", col) else: _k = lit(k) if isinstance(k, int) else k return _invoke_function_over_columns(_get_kll_functions_class(), "kll_sketch_double_agg_build", col, _k) @try_remote_functions def kll_sketch_double_agg_merge(col: "ColumnOrName") -> Column: return _invoke_function_over_columns(_get_kll_functions_class(), "kll_sketch_double_agg_merge", col) @try_remote_functions def kll_sketch_double_get_min(col: "ColumnOrName") -> Column: return _invoke_function(_get_kll_functions_class(), "kll_sketch_double_get_min", _to_java_column(col)) @try_remote_functions def kll_sketch_double_get_max(col: "ColumnOrName") -> Column: return _invoke_function(_get_kll_functions_class(), "kll_sketch_double_get_max", _to_java_column(col)) @try_remote_functions def kll_sketch_double_get_pmf(col: "ColumnOrName", splitPoints: Union[List[float], Tuple[float], Column], isInclusive: bool = True) -> Column: if isinstance(splitPoints, (list, tuple)): splitPoints = _array_as_java_column(splitPoints) elif isinstance(splitPoints, Column): splitPoints = _to_java_column(splitPoints) return _invoke_function(_get_kll_functions_class(), "kll_sketch_double_get_pmf", col, splitPoints, isInclusive) @try_remote_functions def kll_sketch_double_get_cdf(col: "ColumnOrName", splitPoints: Union[List[float], Column], isInclusive: bool = True) -> Column: if isinstance(splitPoints, (list, tuple)): splitPoints = _array_as_java_column(splitPoints) elif isinstance(splitPoints, Column): splitPoints = _to_java_column(splitPoints) return _invoke_function(_get_kll_functions_class(), "kll_sketch_double_get_cdf", col, splitPoints, isInclusive)