cluster/loadbalance/aliasmethod/alias_method.go (79 lines of code) (raw):

/* * Licensed to the Apache Software Foundation (ASF) under one or more * contributor license agreements. See the NOTICE file distributed with * this work for additional information regarding copyright ownership. * The ASF licenses this file to You under the Apache License, Version 2.0 * (the "License"); you may not use this file except in compliance with * the License. You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ // Package aliasmethod implements alias-method algorithm load balance strategy. package aliasmethod // weighted random with alias-method algorithm import ( "math/rand" ) import ( "dubbo.apache.org/dubbo-go/v3/cluster/loadbalance" "dubbo.apache.org/dubbo-go/v3/protocol" ) type aliasMethodPicker struct { invokers []protocol.Invoker // Instance weightSum int64 alias []int prob []float64 } func NewAliasMethodPicker(invokers []protocol.Invoker, invocation protocol.Invocation) *aliasMethodPicker { am := &aliasMethodPicker{ invokers: invokers, } am.init(invocation) return am } // Alias Method: https://en.wikipedia.org/wiki/Alias_method func (am *aliasMethodPicker) init(invocation protocol.Invocation) { n := len(am.invokers) weights := make([]int64, n) am.alias = make([]int, n) am.prob = make([]float64, n) totalWeight := int64(0) scaledProb := make([]float64, n) small := make([]int, 0, n) large := make([]int, 0, n) for i, invoker := range am.invokers { weight := loadbalance.GetWeight(invoker, invocation) weights[i] = weight totalWeight += weight } // when invoker weight all zero if totalWeight <= 0 { totalWeight = int64(1) } am.weightSum = totalWeight for i, weight := range weights { scaledProb[i] = float64(weight) * float64(n) / float64(totalWeight) if scaledProb[i] < 1.0 { small = append(small, i) } else { large = append(large, i) } } for len(small) > 0 && len(large) > 0 { l := small[len(small)-1] small = small[:len(small)-1] g := large[len(large)-1] large = large[:len(large)-1] am.prob[l] = scaledProb[l] am.alias[l] = g scaledProb[g] -= 1.0 - scaledProb[l] if scaledProb[g] < 1.0 { small = append(small, g) } else { large = append(large, g) } } for len(large) > 0 { g := large[len(large)-1] large = large[:len(large)-1] am.prob[g] = 1.0 } for len(small) > 0 { l := small[len(small)-1] small = small[:len(small)-1] am.prob[l] = 1.0 } } func (am *aliasMethodPicker) Pick() protocol.Invoker { i := rand.Intn(len(am.invokers)) if rand.Float64() < am.prob[i] { return am.invokers[i] } return am.invokers[am.alias[i]] }