in modules/ml-ext/ml/src/main/java/org/apache/ignite/ml/selection/scoring/evaluator/Evaluator.java [493:546]
private static Map<Class, EvaluationContext> initEvaluationContexts(
Dataset<EmptyContext, FeatureMatrixWithLabelsOnHeapData> dataset,
Metric... metrics
) {
long nonEmptyCtxsCnt = Arrays.stream(metrics)
.map(x -> x.makeAggregator().createInitializedContext())
.filter(x -> ((EvaluationContext)x).needToCompute())
.count();
if (nonEmptyCtxsCnt == 0) {
HashMap<Class, EvaluationContext> res = new HashMap<>();
for (Metric m : metrics) {
MetricStatsAggregator<Double, ?, ?> aggregator = m.makeAggregator();
res.put(aggregator.getClass(), (EvaluationContext)m.makeAggregator().createInitializedContext());
return res;
}
}
return dataset.compute(data -> {
Map<Class, MetricStatsAggregator> aggrs = new HashMap<>();
for (Metric m : metrics) {
MetricStatsAggregator<Double, ?, ?> aggregator = m.makeAggregator();
if (!aggrs.containsKey(aggregator.getClass()))
aggrs.put(aggregator.getClass(), aggregator);
}
Map<Class, EvaluationContext> aggrToEvCtx = new HashMap<>();
aggrs.forEach((clazz, aggr) -> aggrToEvCtx.put(clazz, (EvaluationContext)aggr.createInitializedContext()));
for (int i = 0; i < data.getLabels().length; i++) {
LabeledVector<Double> vector = VectorUtils.of(data.getFeatures()[i]).labeled(data.getLabels()[i]);
aggrToEvCtx.values().forEach(ctx -> ctx.aggregate(vector));
}
return aggrToEvCtx;
}, (left, right) -> {
if (left == null && right == null)
return new HashMap<>();
if (left == null)
return right;
if (right == null)
return left;
HashMap<Class, EvaluationContext> res = new HashMap<>();
for (Class key : left.keySet()) {
EvaluationContext ctx1 = left.get(key);
EvaluationContext ctx2 = right.get(key);
A.ensure(ctx1 != null && ctx2 != null, "ctx1 != null && ctx2 != null");
res.put(key, ctx1.mergeWith(ctx2));
}
return res;
});
}