common/protobuf/kudu/gutil/map-util.h (565 lines of code) (raw):

// Copyright 2005 Google Inc. // // #status: RECOMMENDED // #category: maps // #summary: Utility functions for use with map-like containers. // // This file provides utility functions for use with STL map-like data // structures, such as std::map and hash_map. Some functions will also work with // sets, such as ContainsKey(). // // The main functions in this file fall into the following categories: // // - Find*() // - Contains*() // - Insert*() // - Lookup*() // // These functions often have "...OrDie" or "...OrDieNoPrint" variants. These // variants will crash the process with a CHECK() failure on error, including // the offending key/data in the log message. The NoPrint variants will not // include the key/data in the log output under the assumption that it's not a // printable type. // // Most functions are fairly self explanatory from their names, with the // exception of Find*() vs Lookup*(). The Find functions typically use the map's // .find() member function to locate and return the map's value type. The // Lookup*() functions typically use the map's .insert() (yes, insert) member // function to insert the given value if necessary and returns (usually a // reference to) the map's value type for the found item. // // See the per-function comments for specifics. // // There are also a handful of functions for doing other miscellaneous things. // // A note on terminology: // // Map-like containers are collections of pairs. Like all STL containers they // contain a few standard typedefs identifying the types of data they contain. // Given the following map declaration: // // map<string, int> my_map; // // the notable typedefs would be as follows: // // - key_type -- string // - value_type -- pair<const string, int> // - mapped_type -- int // // Note that the map above contains two types of "values": the key-value pairs // themselves (value_type) and the values within the key-value pairs // (mapped_type). A value_type consists of a key_type and a mapped_type. // // The documentation below is written for programmers thinking in terms of keys // and the (mapped_type) values associated with a given key. For example, the // statement // // my_map["foo"] = 3; // // has a key of "foo" (type: string) with a value of 3 (type: int). // #ifndef UTIL_GTL_MAP_UTIL_H_ #define UTIL_GTL_MAP_UTIL_H_ #include <cstddef> #include <tuple> #include <utility> using std::make_pair; using std::pair; #include <vector> using std::vector; #include <glog/logging.h> #include "gutil/logging-inl.h" // // Find*() // // Returns a const reference to the value associated with the given key if it // exists. Crashes otherwise. // // This is intended as a replacement for operator[] as an rvalue (for reading) // when the key is guaranteed to exist. // // operator[] for lookup is discouraged for several reasons: // * It has a side-effect of inserting missing keys // * It is not thread-safe (even when it is not inserting, it can still // choose to resize the underlying storage) // * It invalidates iterators (when it chooses to resize) // * It default constructs a value object even if it doesn't need to // // This version assumes the key is printable, and includes it in the fatal log // message. template <class Collection> const typename Collection::mapped_type& FindOrDie(const Collection& collection, const typename Collection::key_type& key) { auto it = collection.find(key); CHECK(it != collection.end()) << "Map key not found: " << key; return it->second; } // Same as above, but returns a non-const reference. template <class Collection> typename Collection::mapped_type& FindOrDie(Collection& collection, // NOLINT const typename Collection::key_type& key) { auto it = collection.find(key); CHECK(it != collection.end()) << "Map key not found: " << key; return it->second; } // Same as FindOrDie above, but doesn't log the key on failure. template <class Collection> const typename Collection::mapped_type& FindOrDieNoPrint(const Collection& collection, const typename Collection::key_type& key) { typename Collection::const_iterator it = collection.find(key); CHECK(it != collection.end()) << "Map key not found"; return it->second; } // Same as above, but returns a non-const reference. template <class Collection> typename Collection::mapped_type& FindOrDieNoPrint(Collection& collection, // NOLINT const typename Collection::key_type& key) { typename Collection::iterator it = collection.find(key); CHECK(it != collection.end()) << "Map key not found"; return it->second; } // Returns a const reference to the value associated with the given key if it // exists, otherwise a const reference to the provided default value is // returned. // // WARNING: If a temporary object is passed as the default "value," this // function will return a reference to that temporary object, which will be // destroyed by the end of the statement. Specifically, if you have a map with // string values, and you pass a char* as the default "value," either use the // returned value immediately or store it in a string (not string&). Details: template <class Collection> const typename Collection::mapped_type& FindWithDefault(const Collection& collection, const typename Collection::key_type& key, const typename Collection::mapped_type& value) { auto it = collection.find(key); if (it == collection.end()) { return value; } return it->second; } // Returns a pointer to the const value associated with the given key if it // exists, or NULL otherwise. template <class Collection> const typename Collection::mapped_type* FindOrNull(const Collection& collection, const typename Collection::key_type& key) { auto it = collection.find(key); if (it == collection.end()) { return 0; } return &it->second; } // Same as above but returns a pointer to the non-const value. template <class Collection> typename Collection::mapped_type* FindOrNull(Collection& collection, // NOLINT const typename Collection::key_type& key) { auto it = collection.find(key); if (it == collection.end()) { return 0; } return &it->second; } // Returns a pointer to the const value associated with the greatest key // that's less than or equal to the given key, or NULL if no such key exists. template <class Collection> const typename Collection::mapped_type* FindFloorOrNull(const Collection& collection, const typename Collection::key_type& key) { auto it = collection.upper_bound(key); if (it == collection.begin()) { return 0; } return &(--it)->second; } // Same as above but returns a pointer to the non-const value. template <class Collection> typename Collection::mapped_type* FindFloorOrNull(Collection& collection, // NOLINT const typename Collection::key_type& key) { auto it = collection.upper_bound(key); if (it == collection.begin()) { return 0; } return &(--it)->second; } // Returns a const-reference to the value associated with the greatest key // that's less than or equal to the given key, or crashes if it does not exist. template <class Collection> const typename Collection::mapped_type& FindFloorOrDie(const Collection& collection, const typename Collection::key_type& key) { auto it = collection.upper_bound(key); CHECK(it != collection.begin()); return (--it)->second; } // Same as above, but returns a non-const reference. template <class Collection> typename Collection::mapped_type& FindFloorOrDie(Collection& collection, const typename Collection::key_type& key) { auto it = collection.upper_bound(key); CHECK(it != collection.begin()); return (--it)->second; } // Returns the pointer value associated with the given key. If none is found, // NULL is returned. The function is designed to be used with a map of keys to // pointers. // // This function does not distinguish between a missing key and a key mapped // to a NULL value. template <class Collection> typename Collection::mapped_type FindPtrOrNull(const Collection& collection, const typename Collection::key_type& key) { auto it = collection.find(key); if (it == collection.end()) { return typename Collection::mapped_type(0); } return it->second; } // Same as above, except takes non-const reference to collection. // // This function is needed for containers that propagate constness to the // pointee, such as boost::ptr_map. template <class Collection> typename Collection::mapped_type FindPtrOrNull(Collection& collection, // NOLINT const typename Collection::key_type& key) { auto it = collection.find(key); if (it == collection.end()) { return typename Collection::mapped_type(0); } return it->second; } // FindPtrOrNull like function for maps whose value is a smart pointer like shared_ptr or // unique_ptr. // Returns the raw pointer contained in the smart pointer for the first found key, if it exists, // or null if it doesn't. template <class Collection> typename Collection::mapped_type::element_type* FindPointeeOrNull(const Collection& collection, // NOLINT, const typename Collection::key_type& key) { auto it = collection.find(key); if (it == collection.end()) { return nullptr; } return it->second.get(); } // Finds the value associated with the given key and copies it to *value (if not // NULL). Returns false if the key was not found, true otherwise. template <class Collection, class Key, class Value> bool FindCopy(const Collection& collection, const Key& key, Value* const value) { auto it = collection.find(key); if (it == collection.end()) { return false; } if (value) { *value = it->second; } return true; } // // Contains*() // // Returns true iff the given collection contains the given key. template <class Collection, class Key> bool ContainsKey(const Collection& collection, const Key& key) { return collection.find(key) != collection.end(); } // Returns true iff the given collection contains the given key-value pair. template <class Collection, class Key, class Value> bool ContainsKeyValuePair(const Collection& collection, const Key& key, const Value& value) { typedef typename Collection::const_iterator const_iterator; std::pair<const_iterator, const_iterator> range = collection.equal_range(key); for (const_iterator it = range.first; it != range.second; ++it) { if (it->second == value) { return true; } } return false; } // // Insert*() // // Inserts the given key-value pair into the collection. Returns true if the // given key didn't previously exist. If the given key already existed in the // map, its value is changed to the given "value" and false is returned. template <class Collection> bool InsertOrUpdate(Collection* const collection, const typename Collection::value_type& vt) { std::pair<typename Collection::iterator, bool> ret = collection->insert(vt); if (!ret.second) { // update ret.first->second = vt.second; return false; } return true; } // Same as above, except that the key and value are passed separately. template <class Collection> bool InsertOrUpdate(Collection* const collection, const typename Collection::key_type& key, const typename Collection::mapped_type& value) { return InsertOrUpdate( collection, typename Collection::value_type(key, value)); } // Inserts/updates all the key-value pairs from the range defined by the // iterators "first" and "last" into the given collection. template <class Collection, class InputIterator> void InsertOrUpdateMany(Collection* const collection, InputIterator first, InputIterator last) { for (; first != last; ++first) { InsertOrUpdate(collection, *first); } } // Change the value associated with a particular key in a map or hash_map // of the form map<Key, Value*> which owns the objects pointed to by the // value pointers. If there was an existing value for the key, it is deleted. // True indicates an insert took place, false indicates an update + delete. template <class Collection> bool InsertAndDeleteExisting( Collection* const collection, const typename Collection::key_type& key, const typename Collection::mapped_type& value) { std::pair<typename Collection::iterator, bool> ret = collection->insert(typename Collection::value_type(key, value)); if (!ret.second) { delete ret.first->second; ret.first->second = value; return false; } return true; } // Inserts the given key and value into the given collection iff the given key // did NOT already exist in the collection. If the key previously existed in the // collection, the value is not changed. Returns true if the key-value pair was // inserted; returns false if the key was already present. template <class Collection> bool InsertIfNotPresent(Collection* const collection, const typename Collection::value_type& vt) { return collection->insert(vt).second; } // Same as above except the key and value are passed separately. template <class Collection> bool InsertIfNotPresent( Collection* const collection, const typename Collection::key_type& key, const typename Collection::mapped_type& value) { return InsertIfNotPresent( collection, typename Collection::value_type(key, value)); } // Same as above except dies if the key already exists in the collection. template <class Collection> void InsertOrDie(Collection* const collection, const typename Collection::value_type& value) { CHECK(InsertIfNotPresent(collection, value)) << "duplicate value: " << value; } // Same as above except doesn't log the value on error. template <class Collection> void InsertOrDieNoPrint(Collection* const collection, const typename Collection::value_type& value) { CHECK(InsertIfNotPresent(collection, value)) << "duplicate value."; } // Inserts the key-value pair into the collection. Dies if key was already // present. template <class Collection> void InsertOrDie(Collection* const collection, const typename Collection::key_type& key, const typename Collection::mapped_type& data) { CHECK(InsertIfNotPresent(collection, key, data)) << "duplicate key: " << key; } // Same as above except deson't log the key on error. template <class Collection> void InsertOrDieNoPrint( Collection* const collection, const typename Collection::key_type& key, const typename Collection::mapped_type& data) { CHECK(InsertIfNotPresent(collection, key, data)) << "duplicate key."; } // Inserts a new key and default-initialized value. Dies if the key was already // present. Returns a reference to the value. Example usage: // // map<int, SomeProto> m; // SomeProto& proto = InsertKeyOrDie(&m, 3); // proto.set_field("foo"); template <class Collection> typename Collection::mapped_type& InsertKeyOrDie( Collection* const collection, const typename Collection::key_type& key) { typedef typename Collection::value_type value_type; std::pair<typename Collection::iterator, bool> res = collection->insert(value_type(key, typename Collection::mapped_type())); CHECK(res.second) << "duplicate key: " << key; return res.first->second; } // // Emplace*() // // Dancing with std::enable_if() is necessary to make these two functions // below work for both dictionary-like and set-like containers as well. // The idea is that for dictionary-like containers Collection::value_type // is always pair<const key_type, mapped_type>, so it cannot be the same // as key type. template <class Collection, class... Args> typename std::enable_if< std::is_same<typename Collection::key_type, typename Collection::value_type>::value, bool>::type EmplaceIfNotPresent(Collection* const collection, Args&&... args) { return collection->emplace(std::forward<Args>(args)...).second; } template <class Collection, class... Args> typename std::enable_if< !std::is_same<typename Collection::key_type, typename Collection::value_type>::value, bool>::type EmplaceIfNotPresent(Collection* const collection, Args&&... args) { return collection->try_emplace(std::forward<Args>(args)...).second; } // Emplaces the given key-value pair into the collection. Returns true if the // given key didn't previously exist. If the given key already existed in the // map, its value is changed to the given "value" and false is returned. template <class Collection> bool EmplaceOrUpdate(Collection* const collection, const typename Collection::key_type& key, typename Collection::mapped_type&& value) { return collection->insert_or_assign( key, std::forward<typename Collection::mapped_type>(value)).second; } // Given the key and parameters to construct the mapped object in-place, // EmplaceOrDie() returns reference to the mapped object for dictionary-like // containers or constant reference to the element itself for set-like ones. // See the comment for EmplaceIfNotPresent() for details behind the template // meta-programming details. template <class Collection, class... Args> typename std::enable_if< std::is_same<typename Collection::key_type, typename Collection::value_type>::value, const typename Collection::value_type&>::type EmplaceOrDie(Collection* const collection, Args&&... args) { auto res = collection->emplace(std::forward<Args>(args)...); CHECK(res.second) << "duplicate value"; return *res.first; } template <class Collection, class... Args> typename std::enable_if< !std::is_same<typename Collection::key_type, typename Collection::value_type>::value, typename Collection::mapped_type&>::type EmplaceOrDie(Collection* const collection, Args&&... args) { auto res = collection->emplace(std::forward<Args>(args)...); CHECK(res.second) << "duplicate value"; return res.first->second; } // // Lookup*() // // Looks up a given key and value pair in a collection and inserts the key-value // pair if it's not already present. Returns a reference to the value associated // with the key. template <class Collection> typename Collection::mapped_type& LookupOrInsert(Collection* const collection, const typename Collection::value_type& vt) { return collection->insert(vt).first->second; } // Same as above except the key-value are passed separately. template <class Collection> typename Collection::mapped_type& LookupOrInsert(Collection* const collection, const typename Collection::key_type& key, const typename Collection::mapped_type& value) { return LookupOrInsert( collection, typename Collection::value_type(key, value)); } // It's similar to LookupOrInsert() but uses the emplace and r-value mechanics // to achieve the desired results, constructing the element in-place in the // container. The constructor of the new element is called with exactly the same // arguments as supplied to emplace, forwarded via std::forward<Args>(args). // The element is constructed only if there was no element with the specified // key in the container. // For details, see // https://en.cppreference.com/w/cpp/container/map/try_emplace // https://en.cppreference.com/w/cpp/container/unordered_map/try_emplace template <class Collection, class... Args> typename Collection::mapped_type& LookupOrEmplace(Collection* const collection, Args&&... args) { return collection->try_emplace(std::forward<Args>(args)...).first->second; } // Counts the number of equivalent elements in the given "sequence", and stores // the results in "count_map" with element as the key and count as the value. // // Example: // vector<string> v = {"a", "b", "c", "a", "b"}; // map<string, int> m; // AddTokenCounts(v, 1, &m); // assert(m["a"] == 2); // assert(m["b"] == 2); // assert(m["c"] == 1); template <typename Sequence, typename Collection> void AddTokenCounts( const Sequence& sequence, const typename Collection::mapped_type& increment, Collection* const count_map) { for (typename Sequence::const_iterator it = sequence.begin(); it != sequence.end(); ++it) { typename Collection::mapped_type& value = LookupOrInsert(count_map, *it, typename Collection::mapped_type()); value += increment; } } // Helpers for LookupOrInsertNew(), needed to create a new value type when the // type itself is a pointer, i.e., these extract the actual type from a pointer. template <class T> void MapUtilAssignNewDefaultInstance(T** location) { *location = new T(); } template <class T, class Arg> void MapUtilAssignNewInstance(T** location, const Arg &arg) { *location = new T(arg); } // Returns a reference to the value associated with key. If not found, a value // is default constructed on the heap and added to the map. // // This function is useful for containers of the form map<Key, Value*>, where // inserting a new key, value pair involves constructing a new heap-allocated // Value, and storing a pointer to that in the collection. template <class Collection> typename Collection::mapped_type& LookupOrInsertNew(Collection* const collection, const typename Collection::key_type& key) { std::pair<typename Collection::iterator, bool> ret = collection->insert( typename Collection::value_type(key, static_cast<typename Collection::mapped_type>(NULL))); if (ret.second) { // This helper is needed to 'extract' the Value type from the type of the // container value, which is (Value*). MapUtilAssignNewDefaultInstance(&(ret.first->second)); } return ret.first->second; } // Same as above but constructs the value using the single-argument constructor // and the given "arg". template <class Collection, class Arg> typename Collection::mapped_type& LookupOrInsertNew(Collection* const collection, const typename Collection::key_type& key, const Arg& arg) { std::pair<typename Collection::iterator, bool> ret = collection->insert( typename Collection::value_type( key, static_cast<typename Collection::mapped_type>(NULL))); if (ret.second) { // This helper is needed to 'extract' the Value type from the type of the // container value, which is (Value*). MapUtilAssignNewInstance(&(ret.first->second), arg); } return ret.first->second; } // Lookup of linked/shared pointers is used in two scenarios: // // Use LookupOrInsertSharedPtr if the container does not own the elements // for their whole lifetime. This is typically the case when a reader allows // parallel updates to the container. In this case a Mutex only needs to lock // container operations, but all element operations must be performed on the // shared pointer. Finding an element must be performed using FindPtr*() and // cannot be done with FindLinkedPtr*() even though it compiles. // Lookup a key in a map or hash_map whose values are shared_ptrs. If it is // missing, set collection[key].reset(new Value::element_type). Unlike // LookupOrInsertNewLinkedPtr, this function returns the shared_ptr instead of // the raw pointer. Value::element_type must be default constructable. template <class Collection> typename Collection::mapped_type& LookupOrInsertNewSharedPtr( Collection* const collection, const typename Collection::key_type& key) { typedef typename Collection::mapped_type SharedPtr; typedef typename Collection::mapped_type::element_type Element; std::pair<typename Collection::iterator, bool> ret = collection->insert(typename Collection::value_type(key, SharedPtr())); if (ret.second) { ret.first->second.reset(new Element()); } return ret.first->second; } // A variant of LookupOrInsertNewSharedPtr where the value is constructed using // constructor arguments. Note: the constructor arguments are computed even if // they will not be used, so only values cheap to compute should be passed // here. On the other hand it does not matter how expensive the construction // of the actual stored value is, as that only occurs if necessary. template <class Collection, class... Args> typename Collection::mapped_type& LookupOrInsertNewSharedPtr( Collection* const collection, const typename Collection::key_type& key, const Args&... args) { typedef typename Collection::mapped_type SharedPtr; typedef typename Collection::mapped_type::element_type Element; std::pair<typename Collection::iterator, bool> ret = collection->insert(typename Collection::value_type(key, SharedPtr())); if (ret.second) { ret.first->second.reset(new Element(args...)); } return ret.first->second; } // // Misc Utility Functions // // Updates the value associated with the given key. If the key was not already // present, then the key-value pair are inserted and "previous" is unchanged. If // the key was already present, the value is updated and "*previous" will // contain a copy of the old value. // // InsertOrReturnExisting has complementary behavior that returns the // address of an already existing value, rather than updating it. template <class Collection> bool UpdateReturnCopy(Collection* const collection, const typename Collection::key_type& key, const typename Collection::mapped_type& value, typename Collection::mapped_type* previous) { std::pair<typename Collection::iterator, bool> ret = collection->insert(typename Collection::value_type(key, value)); if (!ret.second) { // update if (previous) { *previous = ret.first->second; } ret.first->second = value; return true; } return false; } // Same as above except that the key and value are passed as a pair. template <class Collection> bool UpdateReturnCopy(Collection* const collection, const typename Collection::value_type& vt, typename Collection::mapped_type* previous) { std::pair<typename Collection::iterator, bool> ret = collection->insert(vt); if (!ret.second) { // update if (previous) { *previous = ret.first->second; } ret.first->second = vt.second; return true; } return false; } // Tries to insert the given key-value pair into the collection. Returns NULL if // the insert succeeds. Otherwise, returns a pointer to the existing value. // // This complements UpdateReturnCopy in that it allows to update only after // verifying the old value and still insert quickly without having to look up // twice. Unlike UpdateReturnCopy this also does not come with the issue of an // undefined previous* in case new data was inserted. template <class Collection> typename Collection::mapped_type* const InsertOrReturnExisting(Collection* const collection, const typename Collection::value_type& vt) { std::pair<typename Collection::iterator, bool> ret = collection->insert(vt); if (ret.second) { return NULL; // Inserted, no existing previous value. } else { return &ret.first->second; // Return address of already existing value. } } // Same as above, except for explicit key and data. template <class Collection> typename Collection::mapped_type* const InsertOrReturnExisting( Collection* const collection, const typename Collection::key_type& key, const typename Collection::mapped_type& data) { return InsertOrReturnExisting(collection, typename Collection::value_type(key, data)); } // Saves the reverse mapping into reverse. Key/value pairs are inserted in the // order the iterator returns them. template <class Collection, class ReverseCollection> void ReverseMap(const Collection& collection, ReverseCollection* const reverse) { CHECK(reverse != NULL); for (typename Collection::const_iterator it = collection.begin(); it != collection.end(); ++it) { InsertOrUpdate(reverse, it->second, it->first); } } // Erases the collection item identified by the given key, and returns the value // associated with that key. It is assumed that the value (i.e., the // mapped_type) is a pointer. Returns NULL if the key was not found in the // collection. // // Examples: // map<string, MyType*> my_map; // // One line cleanup: // delete EraseKeyReturnValuePtr(&my_map, "abc"); // // Use returned value: // unique_ptr<MyType> value_ptr(EraseKeyReturnValuePtr(&my_map, "abc")); // if (value_ptr.get()) // value_ptr->DoSomething(); // // Note: if 'collection' is a multimap, this will only erase and return the // first value. template <class Collection> typename Collection::mapped_type EraseKeyReturnValuePtr( Collection* const collection, const typename Collection::key_type& key) { auto it = collection->find(key); if (it == collection->end()) { return typename Collection::mapped_type(); } typename Collection::mapped_type v = std::move(it->second); collection->erase(it); return v; } // Inserts all the keys from map_container into key_container, which must // support insert(MapContainer::key_type). // // Note: any initial contents of the key_container are not cleared. template <class MapContainer, class KeyContainer> void InsertKeysFromMap(const MapContainer& map_container, KeyContainer* key_container) { CHECK(key_container != NULL); for (typename MapContainer::const_iterator it = map_container.begin(); it != map_container.end(); ++it) { key_container->insert(it->first); } } // Appends all the keys from map_container into key_container, which must // support push_back(MapContainer::key_type). // // Note: any initial contents of the key_container are not cleared. template <class MapContainer, class KeyContainer> void AppendKeysFromMap(const MapContainer& map_container, KeyContainer* key_container) { CHECK(key_container != NULL); for (typename MapContainer::const_iterator it = map_container.begin(); it != map_container.end(); ++it) { key_container->push_back(it->first); } } // A more specialized overload of AppendKeysFromMap to optimize reallocations // for the common case in which we're appending keys to a vector and hence can // (and sometimes should) call reserve() first. // // (It would be possible to play SFINAE games to call reserve() for any // container that supports it, but this seems to get us 99% of what we need // without the complexity of a SFINAE-based solution.) template <class MapContainer, class KeyType> void AppendKeysFromMap(const MapContainer& map_container, std::vector<KeyType>* key_container) { CHECK(key_container != NULL); // We now have the opportunity to call reserve(). Calling reserve() every // time is a bad idea for some use cases: libstdc++'s implementation of // vector<>::reserve() resizes the vector's backing store to exactly the // given size (unless it's already at least that big). Because of this, // the use case that involves appending a lot of small maps (total size // N) one by one to a vector would be O(N^2). But never calling reserve() // loses the opportunity to improve the use case of adding from a large // map to an empty vector (this improves performance by up to 33%). A // number of heuristics are possible; see the discussion in // cl/34081696. Here we use the simplest one. if (key_container->empty()) { key_container->reserve(map_container.size()); } for (typename MapContainer::const_iterator it = map_container.begin(); it != map_container.end(); ++it) { key_container->push_back(it->first); } } // Inserts all the values from map_container into value_container, which must // support push_back(MapContainer::mapped_type). // // Note: any initial contents of the value_container are not cleared. template <class MapContainer, class ValueContainer> void AppendValuesFromMap(const MapContainer& map_container, ValueContainer* value_container) { CHECK(value_container != NULL); for (typename MapContainer::const_iterator it = map_container.begin(); it != map_container.end(); ++it) { value_container->push_back(it->second); } } template <class MapContainer, class ValueContainer> void EmplaceValuesFromMap(MapContainer&& map_container, ValueContainer* value_container) { CHECK(value_container != nullptr); // See AppendKeysFromMap for why this is done. if (value_container->empty()) { value_container->reserve(map_container.size()); } for (auto&& entry : map_container) { value_container->emplace_back(std::move(entry.second)); } } // A more specialized overload of AppendValuesFromMap to optimize reallocations // for the common case in which we're appending values to a vector and hence // can (and sometimes should) call reserve() first. // // (It would be possible to play SFINAE games to call reserve() for any // container that supports it, but this seems to get us 99% of what we need // without the complexity of a SFINAE-based solution.) template <class MapContainer, class ValueType> void AppendValuesFromMap(const MapContainer& map_container, std::vector<ValueType>* value_container) { EmplaceValuesFromMap(map_container, value_container); } // Compute and insert new value if it's absent from the map. Return a pair with a reference to the // value and a bool indicating whether it was absent at first. // // This inspired on a similar java construct (url split in two lines): // https://docs.oracle.com/javase/8/docs/api/java/util/concurrent/ConcurrentHashMap.html // #computeIfAbsent-K-java.util.function.Function // // It takes a reference to the key and a lambda function. If the key exists in the map, returns // a pair with a pointer to the current value and 'false'. If the key does not exist in the map, // it uses the lambda function to create a value, inserts it into the map, and returns a pair with // a pointer to the new value and 'true'. // // Example usage: // // auto result = ComputeIfAbsentReturnAbsense(&my_collection, // my_key, // [] { return new_value; }); // MyValue* const value = result.first; // if (result.second) .... // // The ComputePair* variants expect a lambda that creates a pair<k, v>. This // can be useful if the key is a StringPiece pointing to external state to // avoid excess memory for the keys, while being safer in multi-threaded // contexts, e.g. in case the key goes out of scope before the container does. // // Example usage: // // map<StringPiece, int, GoodFastHash<StringPiece>> string_to_idx; // vector<unique_ptr<StringPB>> pbs; // auto result = ComputePairIfAbsentReturnAbsense(&string_to_idx, my_key, // [&]() { // unique_ptr<StringPB> s = new StringPB(); // s->set_string(my_key); // int idx = pbs.size(); // pbs.emplace_back(s.release()); // return make_pair(StringPiece(pbs.back()->string()), idx); // }); template <class MapContainer, typename Function> std::pair<typename MapContainer::mapped_type* const, bool> ComputePairIfAbsentReturnAbsense(MapContainer* container, const typename MapContainer::key_type& key, Function compute_pair_func) { typename MapContainer::iterator iter = container->find(key); bool new_value = iter == container->end(); if (new_value) { auto p = compute_pair_func(); std::pair<typename MapContainer::iterator, bool> result = container->emplace(std::move(p.first), std::move(p.second)); DCHECK(result.second) << "duplicate key: " << key; iter = result.first; } return std::make_pair(&iter->second, new_value); } template <class MapContainer, typename Function> std::pair<typename MapContainer::mapped_type* const, bool> ComputeIfAbsentReturnAbsense(MapContainer* container, const typename MapContainer::key_type& key, Function compute_func) { return ComputePairIfAbsentReturnAbsense(container, key, [&key, &compute_func] { return std::make_pair(key, compute_func()); }); }; // Like the above but doesn't return a pair, just returns a pointer to the value. // Example usage: // // MyValue* const value = ComputeIfAbsent(&my_collection, // my_key, // [] { return new_value; }); // template <class MapContainer, typename Function> typename MapContainer::mapped_type* const ComputeIfAbsent(MapContainer* container, const typename MapContainer::key_type& key, Function compute_func) { return ComputeIfAbsentReturnAbsense(container, key, compute_func).first; }; template <class MapContainer, typename Function> typename MapContainer::mapped_type* const ComputePairIfAbsent(MapContainer* container, const typename MapContainer::key_type& key, Function compute_pair_func) { return ComputePairIfAbsentReturnAbsense<MapContainer, Function>( container, key, compute_pair_func) .first; }; #endif // UTIL_GTL_MAP_UTIL_H_