in hugegraph-ml/src/hugegraph_ml/models/pgnn.py [0:0]
def get_communities(remove_feature, graph):
community_size = 20
# Randomly rewire 1% edges
node_list = list(graph.nodes)
for u, v in graph.edges():
if random.random() < 0.01:
x = random.choice(node_list)
if graph.has_edge(u, x):
continue
graph.remove_edge(u, v)
graph.add_edge(u, x)
# remove self-loops
graph.remove_edges_from(nx.selfloop_edges(graph))
edge_index = np.array(list(graph.edges))
# Add (i, j) for an edge (j, i)
edge_index = np.concatenate((edge_index, edge_index[:, ::-1]), axis=0)
edge_index = torch.from_numpy(edge_index).long().permute(1, 0)
n = graph.number_of_nodes()
label = np.zeros((n, n), dtype=int)
for u in node_list:
# the node IDs are simply consecutive integers from 0
for v in range(u):
if u // community_size == v // community_size:
label[u, v] = 1
if remove_feature:
feature = torch.ones((n, 1))
else:
rand_order = np.random.permutation(n)
feature = np.identity(n)[:, rand_order]
data = {
"edge_index": edge_index,
"feature": feature,
"positive_edges": np.stack(np.nonzero(label)),
"num_nodes": feature.shape[0],
}
return data