in hugegraph-ml/src/hugegraph_ml/models/gatne.py [0:0]
def forward(self, block):
input_nodes = block.srcdata[dgl.NID]
output_nodes = block.dstdata[dgl.NID]
batch_size = block.number_of_dst_nodes()
node_embed = self.node_embeddings
node_type_embed = []
with block.local_scope():
for i in range(self.edge_type_count):
edge_type = self.edge_types[i]
block.srcdata[edge_type] = self.node_type_embeddings[input_nodes, i]
block.dstdata[edge_type] = self.node_type_embeddings[output_nodes, i]
block.update_all(
fn.copy_u(edge_type, "m"),
fn.sum("m", edge_type), # pylint: disable=E1101
etype=edge_type,
)
node_type_embed.append(block.dstdata[edge_type])
node_type_embed = torch.stack(node_type_embed, 1)
tmp_node_type_embed = node_type_embed.unsqueeze(2).view(
-1, 1, self.embedding_u_size
)
trans_w = (
self.trans_weights.unsqueeze(0)
.repeat(batch_size, 1, 1, 1)
.view(-1, self.embedding_u_size, self.embedding_size)
)
trans_w_s1 = (
self.trans_weights_s1.unsqueeze(0)
.repeat(batch_size, 1, 1, 1)
.view(-1, self.embedding_u_size, self.dim_a)
)
trans_w_s2 = (
self.trans_weights_s2.unsqueeze(0)
.repeat(batch_size, 1, 1, 1)
.view(-1, self.dim_a, 1)
)
attention = (
F.softmax(
torch.matmul(
torch.tanh(torch.matmul(tmp_node_type_embed, trans_w_s1)),
trans_w_s2,
)
.squeeze(2)
.view(-1, self.edge_type_count),
dim=1,
)
.unsqueeze(1)
.repeat(1, self.edge_type_count, 1)
)
node_type_embed = torch.matmul(attention, node_type_embed).view(
-1, 1, self.embedding_u_size
)
node_embed = node_embed[output_nodes].unsqueeze(1).repeat(
1, self.edge_type_count, 1
) + torch.matmul(node_type_embed, trans_w).view(
-1, self.edge_type_count, self.embedding_size
)
last_node_embed = F.normalize(node_embed, dim=2)
return last_node_embed # [batch_size, edge_type_count, embedding_size]