in hugegraph-ml/src/hugegraph_ml/models/bgnn.py [0:0]
def convert_data(g):
retrieved_tensor = g.ndata["feat"]
retrieved_np = retrieved_tensor.numpy()
retrieved_str = retrieved_np.astype(str)
X = pd.DataFrame(retrieved_str)
retrieved_y_tensor = g.ndata["class"]
retrieved_y_np = retrieved_y_tensor.numpy()
y = pd.DataFrame(retrieved_y_np)
retrieved_cat_features_tensor = g.ndata["cat_features"][0]
cat_features = retrieved_cat_features_tensor.numpy()
train_mask = g.ndata["train_mask"].numpy().tolist()
val_mask = g.ndata["val_mask"].numpy().tolist()
test_mask = g.ndata["test_mask"].numpy().tolist()
masks = {
"0": {
"train": [i for i, v in enumerate(train_mask) if v == 1],
"val": [i for i, v in enumerate(val_mask) if v == 1],
"test": [i for i, v in enumerate(test_mask) if v == 1],
}
}
# graph, X, y, cat_features, masks = read_input(input_folder)
train_mask, val_mask, test_mask = (
masks["0"]["train"],
masks["0"]["val"],
masks["0"]["test"],
)
return X, y, cat_features, train_mask, val_mask, test_mask