server/app/plugins/downloads.py (301 lines of code) (raw):

#!/usr/bin/env python3 # Licensed to the Apache Software Foundation (ASF) under one # or more contributor license agreements. See the NOTICE file # distributed with this work for additional information # regarding copyright ownership. The ASF licenses this file # to you under the Apache License, Version 2.0 (the # "License"); you may not use this file except in compliance # with the License. You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, # software distributed under the License is distributed on an # "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY # KIND, either express or implied. See the License for the # specific language governing permissions and limitations # under the License. """ASF Infrastructure Reporting Dashboard - Download Statistics Tasks""" import asyncio from ..lib import middleware, config import elasticsearch import elasticsearch_dsl from .. import plugins import re import time import os import ua_parser.user_agent_parser import aiohttp import json import datetime DEFAULT_PROJECTS_LIST = "https://whimsy.apache.org/public/public_ldap_projects.json" MAX_HITS = 60 # Max number of artifacts to track in a single search MAX_HITS_UA = 60 # Max number of user agents to collate DOWNLOADS_CACHE_ITEMS = 200 # Keep the 200 latest search results in cache. 200 results is ~50MB DOWNLOADS_CACHE_TTL = 7200 # Only cache items for 2 hours PERSISTENT_REPORTS_BACKFILL_MONTHS = 6 # Try to backfill download reports six months back if possible INTERNAL_AGENTS = { "Windows Package Manager": ("winget-cli", "Microsoft-Delivery-Optimization", "WindowsPackageManager", "Microsoft BITS",), "NSIS (plugin)": ("NSIS_Inetc", ), "Transmission": ("Transmission/", ), "Free Download Manager": ("FDM", ), "Patch My PC Client": ("Patch My PC Publishing Service", ), "Artifactory": ("Artifactory", ), "Scoop/Shovel": ("Scoop/", "Shovel/", ), "BigFix": ("BigFix", ), } # Common crawlers to ignore in stats. IGNORED_BOTS = ("bingbot", "amazonbot", "diffbot", "googlebot", "slurp", "yandex", "baidu", ) # Ignore certain IPs that are known scanners IGNORED_IPS = ( '18.233.217.21', # Unknown AWS machine, does millions of downloads '93.159.231.13', # Kaspersky Labs, testing binaries ) # Different indices have different field names, account for it here: FIELD_NAMES = { "fastly": { # the index prefix "geo_country": "geo_country_code", "bytes": "bytes", "vhost": "vhost", "uri": "url", "timestamp": "timestamp", "_vhost_": "dlcdn.apache.org", # This is a variable field value, not a name "request_method": "request", "useragent": "request_user_agent", }, "loggy": { # the index prefix "geo_country": "geo_country", "bytes": "bytes", "vhost": "vhost", "uri": "uri", "timestamp": "@timestamp", "_vhost_": "downloads.apache.org", # This is a variable field value, not a name "request_method": "request_method", "useragent": "useragent", }, } dataurl = "http://localhost:9200" datadir = None # Where to store persistent data if hasattr(config.reporting, "downloads"): # If prod... dataurl = config.reporting.downloads["dataurl"] datadir = config.reporting.downloads.get("datadir") es_client = elasticsearch.AsyncElasticsearch(hosts=[dataurl], timeout=45) if datadir: if not os.path.exists(datadir): print(f"Setting up persistent data dir for download stats: {datadir}") try: os.mkdir(datadir) except OSError as e: print(f"Could not set up data directory {datadir}, will not store persistent download stats!") # WARNING: whilst operations on lists are generally thread-safe, this cache is not, # because updating the cache requires several operations which are not currently protected by a lock. # However, it appears that access to instances of this code are single-threaded by hypercorn, # so the lack of thread safety should not be a problem. downloads_data_cache = [] async def make_query(provider, field_names, project, duration, filters, max_hits=MAX_HITS, max_ua=MAX_HITS_UA, downscaled=False): q = elasticsearch_dsl.Search(using=es_client) if isinstance(duration, str) and "-" in duration: # Whole month math, e.g. now-1M/M for this month only q = q.filter("range", **{field_names["timestamp"]: {"gte": duration, "lte": duration}}) else: q = q.filter("range", **{field_names["timestamp"]: {"gte": f"now-{duration}d"}}) q = q.filter("match", **{field_names["request_method"]: "GET"}) q = q.filter("range", bytes={"gt": 5000}) # this filters out hashes and (most?) sigs # Query project for both TLP and podling download locations. It may be TLP now, it may be Podling, # it may have graduated somewhere in between. query_tlp = elasticsearch_dsl.Q("prefix", **{field_names["uri"] + ".keyword": f"/{project}/"}) query_podling = elasticsearch_dsl.Q("prefix", **{field_names["uri"] + ".keyword": f"/incubator/{project}/"}) q = q.query(elasticsearch_dsl.query.Bool(should=[query_tlp, query_podling], minimum_should_match=1)) q = q.filter("match", **{field_names["vhost"]: field_names["_vhost_"]}) # Various standard filters for weeding out bogus requests uas_to_ignore = list(IGNORED_BOTS) if "empty_ua" in filters: # Empty User-Agent header, usually automation gone wrong q = q.exclude("terms", **{field_names["useragent"]+".keyword": ["", "-"]}) if uas_to_ignore: q = q.exclude("terms", **{field_names["useragent"]: uas_to_ignore}) # Exclude binary scanner machines q = q.exclude("terms", **{"client_ip.keyword": list(IGNORED_IPS)}) # TODO: Make this not extremely slow. For now, we'll filter in post. #if "no_query" in filters: # Don't show results with query strings in them # q = q.exclude("wildcard", **{field_names["uri"]+".keyword": "*="}) # Bucket sorting by most downloaded items main_bucket = q.aggs.bucket( "most_downloads", elasticsearch_dsl.A("terms", field=f"{field_names['uri']}.keyword", size=max_hits) ) main_bucket.metric("useragents", "terms", field=field_names["useragent"]+".keyword", size=max_ua) main_bucket.bucket("per_day", "date_histogram", interval="day", field=field_names["timestamp"] ).metric( "bytes_sum", "sum", field=field_names["bytes"] ).metric( "unique_ips", "cardinality", field="client_ip.keyword" ).metric( "cca2", "terms", field=field_names["geo_country"] + ".keyword" ) # Bucket sorting by most bytes downloaded (may differ from most downloads top 60!) main_bucket = q.aggs.bucket( "most_traffic", elasticsearch_dsl.A("terms", field=f"{field_names['uri']}.keyword", size=max_hits, order={"bytes_sum": "desc"}) ) main_bucket.metric("useragents", "terms", field=field_names["useragent"]+".keyword", size=max_ua) main_bucket.metric( "bytes_sum", "sum", field=field_names["bytes"] ).bucket("per_day", "date_histogram", interval="day", field=field_names["timestamp"] ).metric( "bytes_sum", "sum", field=field_names["bytes"] ).metric( "unique_ips", "cardinality", field="client_ip.keyword" ).metric( "cca2", "terms", field=field_names["geo_country"] + ".keyword" ) try: resp = await es_client.search(index=f"{provider}-*", body=q.to_dict(), size=0, timeout="60s") if downscaled and resp: resp["downscaled"] = True return resp except elasticsearch.TransportError as e: # If too many buckets for us to handle, downscale the UA search if isinstance(e.info, dict) and 'too_many_buckets_exception' in e.info["error"].get("caused_by", {}).get("type", ""): max_ua = int(max_ua*0.67) max_hits = int(max_hits*0.67) print(f"Too many buckets for {project}, downscaling query by 33%") if max_ua > 2: return await make_query(provider, field_names, project, duration, filters, max_hits, max_ua, True) return {"downscaled": downscaled} async def generate_stats(project: str, duration: str, filters: str="empty_ua,no_query"): original_duration = duration if isinstance(duration, str) and "M/M" not in duration: if duration.endswith("d"): duration = duration[:-1] try: duration = int(duration) except ValueError: return {"success": False, "message": "Invalid duration window! Please specify a whole number of days"} downloaded_artifacts = {} query_parameters = { "filters": filters, "timespan": original_duration, "project": project, "daily_stats_4_tuple": ["utc_epoch", "downloads", "unique_clients", "bytes_transferred",], "hosts_tracked": [x["_vhost_"] for x in FIELD_NAMES.values()], "max_hits": MAX_HITS, "max_hits_useragent": MAX_HITS_UA, } # Check if we have a cached result cache_found = False # TODO: the cache key needs to take account of form_data filters as they affect the content cache_key = f"{project}-{duration}" cache_timeout_ts = time.time() - DOWNLOADS_CACHE_TTL epochs = [] for item in downloads_data_cache: # (cache_key, cache_ts, cache_data) if item[0] == cache_key and item[1] >= cache_timeout_ts: cache_found = True downloaded_artifacts = item[2] query_parameters = item[3] break if not cache_found: downscaled = False for provider, field_names in FIELD_NAMES.items(): resp = await make_query(provider, field_names, project, duration, filters) if "aggregations" not in resp: # Skip this provider if no data is available continue if resp.get("downscaled"): # Too many damn buckets downscaled = True for methodology in ( "most_downloads", "most_traffic", ): for entry in resp["aggregations"][methodology]["buckets"]: # url, shortened = /incubator/ponymail/foo.tar.gz -> foo.tar.gz url = re.sub(r"/+", "/", entry["key"]).replace(f"/{project}/", "", 1) # TODO: Address in OpenSearch later on... if "no_query" in filters and "?" in url: continue if "." not in url or url.endswith("/") or url.endswith("KEYS"): # Never count KEYS or non-files continue if url not in downloaded_artifacts: downloaded_artifacts[url] = { "bytes": 0, "hits": 0, "hits_unique": 0, "cca2": {}, "daily_stats": {}, "useragents": {}, } no_bytes = 0 no_hits = 0 no_hits_unique = 0 cca2_hits = {} daily_data = [] # User Agent (Browser + OS) summation uas = {} for uaentry in entry["useragents"]["buckets"]: ua_agent = uaentry["key"] # the full agent string # NOTE: ua_parser will set OS and UA Family to "Other" when it doesn't recognize the UA string. ua = ua_parser.user_agent_parser.Parse(ua_agent) ua_os_family = ua.get("os", {}).get("family", "Unknown") # If OS is "Other", we'll adjust it to "Unknown" ourselves. if ua_os_family == "Other": ua_os_family = "Unknown" # UA family will typically be "Other" when unknown to the parser, we'll address this below. # If the family is empty, we'll also set to Other and adjust later on. ua_agent_family = ua.get("user_agent", {}).get("family", "Other") # Adjust for various package managers we know of if ua_agent_family == "Other": for ia_key, ia_names in INTERNAL_AGENTS.items(): if any(x in ua_agent for x in ia_names): ua_agent_family = ia_key break # If we still don't know what this is, mark as "Unknown", to distinguish from the combined "Other" chart group. if ua_agent_family == "Other": ua_agent_family = "Unknown" ua_key = ua_os_family + " / " + ua_agent_family uas[ua_key] = uas.get(ua_key, 0) + uaentry["doc_count"] for key, val in uas.items(): # There will be duplicate entries here, so we are going to go for the highest count found for each URL downloaded_artifacts[url]["useragents"][key] = max(downloaded_artifacts[url]["useragents"].get(key, 0), val) for daily_entry in entry["per_day"]["buckets"]: day_ts = int(daily_entry["key"] / 1000) epochs.append(day_ts) nb_daily = int(daily_entry["bytes_sum"]["value"]) nh_daily = int(daily_entry["doc_count"]) no_bytes += nb_daily visits_unique = int(daily_entry["unique_ips"]["value"]) no_hits += nh_daily no_hits_unique += visits_unique for ccaentry in daily_entry["cca2"]["buckets"]: cca2 = ccaentry["key"] cca2_count = ccaentry["doc_count"] if cca2 and cca2 != "-": cca2_hits[cca2] = cca2_hits.get(cca2, 0) + cca2_count daily_data.append([day_ts, nh_daily, visits_unique, nb_daily]) # The prevailing agg (most hits or most traffic) wins if no_bytes > downloaded_artifacts[url]["bytes"]: downloaded_artifacts[url]["bytes"] += no_bytes downloaded_artifacts[url]["daily_stats"] = daily_data if no_hits > downloaded_artifacts[url]["hits"]: downloaded_artifacts[url]["hits"] += no_hits downloaded_artifacts[url]["daily_stats"] = daily_data if no_hits_unique > downloaded_artifacts[url]["hits_unique"]: downloaded_artifacts[url]["hits_unique"] += no_hits_unique if sum([x for x in cca2_hits.values()]) > sum([x for x in downloaded_artifacts[url]["cca2"].values()]): downloaded_artifacts[url]["cca2"] = cca2_hits # Ensure all entries are properly marked if query was downscaled if downscaled: for key, val in downloaded_artifacts.items(): val["downscaled"] = True if epochs: min_epoch = time.strftime("%Y-%m-%d 00:00:00", time.gmtime(min(epochs))) max_epoch = time.strftime("%Y-%m-%d 23:59:59", time.gmtime(max(epochs))) query_parameters["timespan"] = f"{min_epoch} (UTC) -> {max_epoch} (UTC)" # Set cache data and cull old cache list if needed new_cache_list = [item for item in downloads_data_cache if item[1] >= cache_timeout_ts] downloads_data_cache.clear() downloads_data_cache.extend(new_cache_list) # Make sure there is room to add another entry # entries are added in date order, so [0] is the oldest while len(downloads_data_cache) >= DOWNLOADS_CACHE_ITEMS: del downloads_data_cache[0] downloads_data_cache.append((cache_key, time.time(), downloaded_artifacts, query_parameters)) return downloaded_artifacts or {}, query_parameters async def downloads_scan_loop(): projects = [] while True: # Update list of projects, if possible - otherwise, fall back to cache projects_list = DEFAULT_PROJECTS_LIST if hasattr(config.reporting, "downloads"): # If prod... projects_list = config.reporting.downloads.get("projects_list", DEFAULT_PROJECTS_LIST) async with aiohttp.ClientSession(timeout=aiohttp.ClientTimeout(total=30)) as hc: try: async with hc.get(projects_list) as req: if req.status == 200: projects = (await req.json())["projects"].keys() except (aiohttp.ClientError, asyncio.TimeoutError, json.JSONDecodeError) as e: print(f"Download stats: Could not fetch list of projects from {projects_list}: {e}") print("Download stats: Using cached entry instead") # For each project, run scans if needed for project in projects: if datadir: # Ensure the project data dir exists, otherwise make it project_datadir = os.path.join(datadir, project) if not os.path.isdir(project_datadir): print(f"Download stats: Setting up downloads data dir for {project}: {project_datadir}") try: os.mkdir(project_datadir) except OSError as e: print(f"Download stats: Could not set up {project_datadir}: {e}") print(f"Download stats: No persistent download data will be saved for this project") continue # Make a list of the reports to gather. We want this month, and perhaps last N months, if the # reports are outdated or missing. months_to_process = [] today = datetime.datetime.utcnow() for m in range(0, PERSISTENT_REPORTS_BACKFILL_MONTHS): today = today.replace(day=1) # Round down to first day of the month monthly_filename = os.path.join(project_datadir, f"{today.year}-{today.month:02}.json") monthly_query = f"now-{m}M/M" # OpenSearch whole-month query monthly_deadline = (today.replace(year=today.year if today.month != 12 else today.year+1, month=today.month % 12+1)).timestamp() report_stat = os.stat(monthly_filename) if os.path.exists(monthly_filename) else None # If no report file, empty file, or it was not updated after the month was done, schedule it if not report_stat or report_stat.st_size == 0 or report_stat.st_mtime < monthly_deadline: months_to_process.append((monthly_filename, monthly_query)) today = today - datetime.timedelta(days=1) # Wind clock back one month for entry in months_to_process: monthly_filename, monthly_query = entry if not os.path.exists(monthly_filename): try: open(monthly_filename, "w+").write("") except OSError as e: print(f"Download stats: Cannot write to data file {monthly_filename}, skipping: {e}") continue # only scan if we don't have a recent stored result json_stat = os.stat(monthly_filename) #Skip if file is present, >0 bytes, and was written to recently if json_stat and json_stat.st_mtime > (time.time() - 86400) and json_stat.st_size > 0: #print(f"Skipping {monthly_filename}") continue # Grab scan results, write to disk stats, query_params = await generate_stats(project, monthly_query) json_result = { "query": query_params, "files": stats, } json.dump(json_result, open(monthly_filename, "w"), indent=2) #print(f"Wrote {monthly_filename}") # Sleep for a couple of hours (4), then check if we need to scan again await asyncio.sleep(4*3600) plugins.root.register(downloads_scan_loop, slug="downloads", title="Real-time Download Stats", icon="bi-cloud-download", private=True) plugins.root.register(slug="downloads_static", title="Public Download Statistics", icon="bi-cloud-download", private=False)