versions/0.11.0/tutorials/gluon/customop.html (403 lines of code) (raw):
<!DOCTYPE html>
<html lang="en">
<head>
<meta charset="utf-8"/>
<meta content="IE=edge" http-equiv="X-UA-Compatible"/>
<meta content="width=device-width, initial-scale=1" name="viewport"/>
<meta content="Creating custom operators with numpy" property="og:title">
<meta content="https://raw.githubusercontent.com/dmlc/web-data/master/mxnet/image/og-logo.png" property="og:image">
<meta content="https://raw.githubusercontent.com/dmlc/web-data/master/mxnet/image/og-logo.png" property="og:image:secure_url">
<meta content="Creating custom operators with numpy" property="og:description"/>
<title>Creating custom operators with numpy — mxnet documentation</title>
<link crossorigin="anonymous" href="https://maxcdn.bootstrapcdn.com/bootstrap/3.3.6/css/bootstrap.min.css" integrity="sha384-1q8mTJOASx8j1Au+a5WDVnPi2lkFfwwEAa8hDDdjZlpLegxhjVME1fgjWPGmkzs7" rel="stylesheet"/>
<link href="https://maxcdn.bootstrapcdn.com/font-awesome/4.5.0/css/font-awesome.min.css" rel="stylesheet"/>
<link href="../../_static/basic.css" rel="stylesheet" type="text/css">
<link href="../../_static/pygments.css" rel="stylesheet" type="text/css">
<link href="../../_static/mxnet.css" rel="stylesheet" type="text/css"/>
<script type="text/javascript">
var DOCUMENTATION_OPTIONS = {
URL_ROOT: '../../',
VERSION: '',
COLLAPSE_INDEX: false,
FILE_SUFFIX: '.html',
HAS_SOURCE: true,
SOURCELINK_SUFFIX: '.txt'
};
</script>
<script src="https://code.jquery.com/jquery-1.11.1.min.js" type="text/javascript"></script>
<script src="../../_static/underscore.js" type="text/javascript"></script>
<script src="../../_static/searchtools_custom.js" type="text/javascript"></script>
<script src="../../_static/doctools.js" type="text/javascript"></script>
<script src="../../_static/selectlang.js" type="text/javascript"></script>
<script src="https://cdnjs.cloudflare.com/ajax/libs/mathjax/2.7.1/MathJax.js?config=TeX-AMS-MML_HTMLorMML" type="text/javascript"></script>
<script type="text/javascript"> jQuery(function() { Search.loadIndex("/versions/0.11.0/searchindex.js"); Search.init();}); </script>
<!-- -->
<!-- <script type="text/javascript" src="../../_static/jquery.js"></script> -->
<!-- -->
<!-- <script type="text/javascript" src="../../_static/underscore.js"></script> -->
<!-- -->
<!-- <script type="text/javascript" src="../../_static/doctools.js"></script> -->
<!-- -->
<!-- <script type="text/javascript" src="https://cdnjs.cloudflare.com/ajax/libs/mathjax/2.7.0/MathJax.js?config=TeX-AMS-MML_HTMLorMML"></script> -->
<!-- -->
<link href="../../genindex.html" rel="index" title="Index">
<link href="../../search.html" rel="search" title="Search"/>
<link href="https://raw.githubusercontent.com/dmlc/web-data/master/mxnet/image/mxnet-icon.png" rel="icon" type="image/png"/>
</link></link></link></meta></meta></meta></head>
<body background="https://raw.githubusercontent.com/dmlc/web-data/master/mxnet/image/mxnet-background-compressed.jpeg" role="document">
<div class="content-block"><div class="navbar navbar-fixed-top">
<div class="container" id="navContainer">
<div class="innder" id="header-inner">
<h1 id="logo-wrap">
<a href="../../" id="logo"><img src="https://raw.githubusercontent.com/dmlc/web-data/master/mxnet/image/mxnet_logo.png"/></a>
</h1>
<nav class="nav-bar" id="main-nav">
<a class="main-nav-link" href="/versions/0.11.0/get_started/install.html">Install</a>
<span id="dropdown-menu-position-anchor">
<a aria-expanded="true" aria-haspopup="true" class="main-nav-link dropdown-toggle" data-toggle="dropdown" href="#" role="button">Gluon <span class="caret"></span></a>
<ul class="dropdown-menu navbar-menu" id="package-dropdown-menu">
<li><a class="main-nav-link" href="/versions/0.11.0/tutorials/gluon/gluon.html">About</a></li>
<li><a class="main-nav-link" href="https://www.d2l.ai/">Dive into Deep Learning</a></li>
<li><a class="main-nav-link" href="https://gluon-cv.mxnet.io">GluonCV Toolkit</a></li>
<li><a class="main-nav-link" href="https://gluon-nlp.mxnet.io/">GluonNLP Toolkit</a></li>
</ul>
</span>
<span id="dropdown-menu-position-anchor">
<a aria-expanded="true" aria-haspopup="true" class="main-nav-link dropdown-toggle" data-toggle="dropdown" href="#" role="button">API <span class="caret"></span></a>
<ul class="dropdown-menu navbar-menu" id="package-dropdown-menu">
<li><a class="main-nav-link" href="/versions/0.11.0/api/python/index.html">Python</a></li>
<li><a class="main-nav-link" href="/versions/0.11.0/api/c++/index.html">C++</a></li>
<li><a class="main-nav-link" href="/versions/0.11.0/api/julia/index.html">Julia</a></li>
<li><a class="main-nav-link" href="/versions/0.11.0/api/perl/index.html">Perl</a></li>
<li><a class="main-nav-link" href="/versions/0.11.0/api/r/index.html">R</a></li>
<li><a class="main-nav-link" href="/versions/0.11.0/api/scala/index.html">Scala</a></li>
</ul>
</span>
<span id="dropdown-menu-position-anchor-docs">
<a aria-expanded="true" aria-haspopup="true" class="main-nav-link dropdown-toggle" data-toggle="dropdown" href="#" role="button">Docs <span class="caret"></span></a>
<ul class="dropdown-menu navbar-menu" id="package-dropdown-menu-docs">
<li><a class="main-nav-link" href="/versions/0.11.0/how_to/faq.html">FAQ</a></li>
<li><a class="main-nav-link" href="/versions/0.11.0/tutorials/index.html">Tutorials</a>
<li><a class="main-nav-link" href="https://github.com/apache/incubator-mxnet/tree/v0.11.0/example">Examples</a></li>
<li><a class="main-nav-link" href="/versions/0.11.0/architecture/index.html">Architecture</a></li>
<li><a class="main-nav-link" href="https://cwiki.apache.org/confluence/display/MXNET/Apache+MXNet+Home">Developer Wiki</a></li>
<li><a class="main-nav-link" href="/versions/0.11.0/model_zoo/index.html">Model Zoo</a></li>
<li><a class="main-nav-link" href="https://github.com/onnx/onnx-mxnet">ONNX</a></li>
</li></ul>
</span>
<span id="dropdown-menu-position-anchor-community">
<a aria-expanded="true" aria-haspopup="true" class="main-nav-link dropdown-toggle" data-toggle="dropdown" href="#" role="button">Community <span class="caret"></span></a>
<ul class="dropdown-menu navbar-menu" id="package-dropdown-menu-community">
<li><a class="main-nav-link" href="http://discuss.mxnet.io">Forum</a></li>
<li><a class="main-nav-link" href="https://github.com/apache/incubator-mxnet/tree/v0.11.0">Github</a></li>
<li><a class="main-nav-link" href="/versions/0.11.0/community/contribute.html">Contribute</a></li>
</ul>
</span>
<span id="dropdown-menu-position-anchor-version" style="position: relative"><a href="#" class="main-nav-link dropdown-toggle" data-toggle="dropdown" role="button" aria-haspopup="true" aria-expanded="true">0.11.0<span class="caret"></span></a><ul id="package-dropdown-menu" class="dropdown-menu"><li><a href="/">master</a></li><li><a href="/versions/1.7.0/">1.7.0</a></li><li><a href=/versions/1.6.0/>1.6.0</a></li><li><a href=/versions/1.5.0/>1.5.0</a></li><li><a href=/versions/1.4.1/>1.4.1</a></li><li><a href=/versions/1.3.1/>1.3.1</a></li><li><a href=/versions/1.2.1/>1.2.1</a></li><li><a href=/versions/1.1.0/>1.1.0</a></li><li><a href=/versions/1.0.0/>1.0.0</a></li><li><a href=/versions/0.12.1/>0.12.1</a></li><li><a href=/versions/0.11.0/>0.11.0</a></li></ul></span></nav>
<script> function getRootPath(){ return "../../" } </script>
<div class="burgerIcon dropdown">
<a class="dropdown-toggle" data-toggle="dropdown" href="#" role="button">☰</a>
<ul class="dropdown-menu" id="burgerMenu">
<li><a href="/versions/0.11.0/get_started/install.html">Install</a></li>
<li><a class="main-nav-link" href="/versions/0.11.0/tutorials/index.html">Tutorials</a></li>
<li class="dropdown-submenu dropdown">
<a aria-expanded="true" aria-haspopup="true" class="dropdown-toggle burger-link" data-toggle="dropdown" href="#" tabindex="-1">Gluon</a>
<ul class="dropdown-menu navbar-menu" id="package-dropdown-menu">
<li><a class="main-nav-link" href="/versions/0.11.0/tutorials/gluon/gluon.html">About</a></li>
<li><a class="main-nav-link" href="http://gluon.mxnet.io">The Straight Dope (Tutorials)</a></li>
<li><a class="main-nav-link" href="https://gluon-cv.mxnet.io">GluonCV Toolkit</a></li>
<li><a class="main-nav-link" href="https://gluon-nlp.mxnet.io/">GluonNLP Toolkit</a></li>
</ul>
</li>
<li class="dropdown-submenu">
<a aria-expanded="true" aria-haspopup="true" class="dropdown-toggle burger-link" data-toggle="dropdown" href="#" tabindex="-1">API</a>
<ul class="dropdown-menu">
<li><a class="main-nav-link" href="/versions/0.11.0/api/python/index.html">Python</a></li>
<li><a class="main-nav-link" href="/versions/0.11.0/api/c++/index.html">C++</a></li>
<li><a class="main-nav-link" href="/versions/0.11.0/api/julia/index.html">Julia</a></li>
<li><a class="main-nav-link" href="/versions/0.11.0/api/perl/index.html">Perl</a></li>
<li><a class="main-nav-link" href="/versions/0.11.0/api/r/index.html">R</a></li>
<li><a class="main-nav-link" href="/versions/0.11.0/api/scala/index.html">Scala</a></li>
</ul>
</li>
<li class="dropdown-submenu">
<a aria-expanded="true" aria-haspopup="true" class="dropdown-toggle burger-link" data-toggle="dropdown" href="#" tabindex="-1">Docs</a>
<ul class="dropdown-menu">
<li><a href="/versions/0.11.0/how_to/faq.html" tabindex="-1">FAQ</a></li>
<li><a href="/versions/0.11.0/tutorials/index.html" tabindex="-1">Tutorials</a></li>
<li><a href="https://github.com/apache/incubator-mxnet/tree/v0.11.0/example" tabindex="-1">Examples</a></li>
<li><a href="/versions/0.11.0/architecture/index.html" tabindex="-1">Architecture</a></li>
<li><a href="https://cwiki.apache.org/confluence/display/MXNET/Apache+MXNet+Home" tabindex="-1">Developer Wiki</a></li>
<li><a href="/versions/0.11.0/model_zoo/index.html" tabindex="-1">Gluon Model Zoo</a></li>
<li><a href="https://github.com/onnx/onnx-mxnet" tabindex="-1">ONNX</a></li>
</ul>
</li>
<li class="dropdown-submenu dropdown">
<a aria-haspopup="true" class="dropdown-toggle burger-link" data-toggle="dropdown" href="#" role="button" tabindex="-1">Community</a>
<ul class="dropdown-menu">
<li><a href="http://discuss.mxnet.io" tabindex="-1">Forum</a></li>
<li><a href="https://github.com/apache/incubator-mxnet/tree/v0.11.0" tabindex="-1">Github</a></li>
<li><a href="/versions/0.11.0/community/contribute.html" tabindex="-1">Contribute</a></li>
</ul>
</li>
<li id="dropdown-menu-position-anchor-version-mobile" class="dropdown-submenu" style="position: relative"><a href="#" tabindex="-1">0.11.0</a><ul class="dropdown-menu"><li><a tabindex="-1" href=/>master</a></li><li><a tabindex="-1" href=/versions/1.6.0/>1.6.0</a></li><li><a tabindex="-1" href=/versions/1.5.0/>1.5.0</a></li><li><a tabindex="-1" href=/versions/1.4.1/>1.4.1</a></li><li><a tabindex="-1" href=/versions/1.3.1/>1.3.1</a></li><li><a tabindex="-1" href=/versions/1.2.1/>1.2.1</a></li><li><a tabindex="-1" href=/versions/1.1.0/>1.1.0</a></li><li><a tabindex="-1" href=/versions/1.0.0/>1.0.0</a></li><li><a tabindex="-1" href=/versions/0.12.1/>0.12.1</a></li><li><a tabindex="-1" href=/versions/0.11.0/>0.11.0</a></li></ul></li></ul>
</div>
<div class="plusIcon dropdown">
<a class="dropdown-toggle" data-toggle="dropdown" href="#" role="button"><span aria-hidden="true" class="glyphicon glyphicon-plus"></span></a>
<ul class="dropdown-menu dropdown-menu-right" id="plusMenu"></ul>
</div>
<div id="search-input-wrap">
<form action="../../search.html" autocomplete="off" class="" method="get" role="search">
<div class="form-group inner-addon left-addon">
<i class="glyphicon glyphicon-search"></i>
<input class="form-control" name="q" placeholder="Search" type="text"/>
</div>
<input name="check_keywords" type="hidden" value="yes">
<input name="area" type="hidden" value="default"/>
</input></form>
<div id="search-preview"></div>
</div>
<div id="searchIcon">
<span aria-hidden="true" class="glyphicon glyphicon-search"></span>
</div>
<!-- <div id="lang-select-wrap"> -->
<!-- <label id="lang-select-label"> -->
<!-- <\!-- <i class="fa fa-globe"></i> -\-> -->
<!-- <span></span> -->
<!-- </label> -->
<!-- <select id="lang-select"> -->
<!-- <option value="en">Eng</option> -->
<!-- <option value="zh">中文</option> -->
<!-- </select> -->
<!-- </div> -->
<!-- <a id="mobile-nav-toggle">
<span class="mobile-nav-toggle-bar"></span>
<span class="mobile-nav-toggle-bar"></span>
<span class="mobile-nav-toggle-bar"></span>
</a> -->
</div>
</div>
</div>
<script type="text/javascript">
$('body').css('background', 'white');
</script>
<div class="container">
<div class="row">
<div aria-label="main navigation" class="sphinxsidebar leftsidebar" role="navigation">
<div class="sphinxsidebarwrapper">
<ul>
<li class="toctree-l1"><a class="reference internal" href="../../api/python/index.html">Python Documents</a></li>
<li class="toctree-l1"><a class="reference internal" href="../../api/r/index.html">R Documents</a></li>
<li class="toctree-l1"><a class="reference internal" href="../../api/julia/index.html">Julia Documents</a></li>
<li class="toctree-l1"><a class="reference internal" href="../../api/c++/index.html">C++ Documents</a></li>
<li class="toctree-l1"><a class="reference internal" href="../../api/scala/index.html">Scala Documents</a></li>
<li class="toctree-l1"><a class="reference internal" href="../../api/perl/index.html">Perl Documents</a></li>
<li class="toctree-l1"><a class="reference internal" href="../../how_to/index.html">HowTo Documents</a></li>
<li class="toctree-l1"><a class="reference internal" href="../../architecture/index.html">System Documents</a></li>
<li class="toctree-l1"><a class="reference internal" href="../index.html">Tutorials</a></li>
</ul>
</div>
</div>
<div class="content">
<div class="page-tracker"></div>
<div class="section" id="creating-custom-operators-with-numpy">
<span id="creating-custom-operators-with-numpy"></span><h1>Creating custom operators with numpy<a class="headerlink" href="#creating-custom-operators-with-numpy" title="Permalink to this headline">¶</a></h1>
<p>In this tutorial, we will learn how to build custom operators with numpy in python. We will go through two examples:</p>
<ul class="simple">
<li>Custom operator without any <code class="docutils literal"><span class="pre">Parameter</span></code>s</li>
<li>Custom operator with <code class="docutils literal"><span class="pre">Parameter</span></code>s</li>
</ul>
<p>Custom operator in python is easy to develop and good for prototyping, but may hurt performance. If you find it to be a bottleneck, please consider moving to a C++ based implementation in the backend.</p>
<div class="highlight-python"><div class="highlight"><pre><span></span><span class="kn">import</span> <span class="nn">numpy</span> <span class="kn">as</span> <span class="nn">np</span>
<span class="kn">import</span> <span class="nn">mxnet</span> <span class="kn">as</span> <span class="nn">mx</span>
<span class="kn">from</span> <span class="nn">mxnet</span> <span class="kn">import</span> <span class="n">gluon</span><span class="p">,</span> <span class="n">autograd</span>
</pre></div>
</div>
<div class="section" id="parameter-less-operators">
<span id="parameter-less-operators"></span><h2>Parameter-less operators<a class="headerlink" href="#parameter-less-operators" title="Permalink to this headline">¶</a></h2>
<p>This operator implements the standard sigmoid activation function. This is only for illustration purposes, in real life you would use the built-in operator <code class="docutils literal"><span class="pre">mx.nd.relu</span></code>.</p>
<div class="section" id="forward-backward-implementation">
<span id="forward-backward-implementation"></span><h3>Forward & backward implementation<a class="headerlink" href="#forward-backward-implementation" title="Permalink to this headline">¶</a></h3>
<p>First we implement the forward and backward computation by sub-classing <code class="docutils literal"><span class="pre">mx.operator.CustomOp</span></code>:</p>
<div class="highlight-python"><div class="highlight"><pre><span></span><span class="k">class</span> <span class="nc">Sigmoid</span><span class="p">(</span><span class="n">mx</span><span class="o">.</span><span class="n">operator</span><span class="o">.</span><span class="n">CustomOp</span><span class="p">):</span>
<span class="k">def</span> <span class="nf">forward</span><span class="p">(</span><span class="bp">self</span><span class="p">,</span> <span class="n">is_train</span><span class="p">,</span> <span class="n">req</span><span class="p">,</span> <span class="n">in_data</span><span class="p">,</span> <span class="n">out_data</span><span class="p">,</span> <span class="n">aux</span><span class="p">):</span>
<span class="sd">"""Implements forward computation.</span>
<span class="sd"> is_train : bool, whether forwarding for training or testing.</span>
<span class="sd"> req : list of {'null', 'write', 'inplace', 'add'}, how to assign to out_data. 'null' means skip assignment, etc.</span>
<span class="sd"> in_data : list of NDArray, input data.</span>
<span class="sd"> out_data : list of NDArray, pre-allocated output buffers.</span>
<span class="sd"> aux : list of NDArray, mutable auxiliary states. Usually not used.</span>
<span class="sd"> """</span>
<span class="n">x</span> <span class="o">=</span> <span class="n">in_data</span><span class="p">[</span><span class="mi">0</span><span class="p">]</span><span class="o">.</span><span class="n">asnumpy</span><span class="p">()</span>
<span class="n">y</span> <span class="o">=</span> <span class="mf">1.0</span> <span class="o">/</span> <span class="p">(</span><span class="mf">1.0</span> <span class="o">+</span> <span class="n">np</span><span class="o">.</span><span class="n">exp</span><span class="p">(</span><span class="o">-</span><span class="n">x</span><span class="p">))</span>
<span class="bp">self</span><span class="o">.</span><span class="n">assign</span><span class="p">(</span><span class="n">out_data</span><span class="p">[</span><span class="mi">0</span><span class="p">],</span> <span class="n">req</span><span class="p">[</span><span class="mi">0</span><span class="p">],</span> <span class="n">mx</span><span class="o">.</span><span class="n">nd</span><span class="o">.</span><span class="n">array</span><span class="p">(</span><span class="n">y</span><span class="p">))</span>
<span class="k">def</span> <span class="nf">backward</span><span class="p">(</span><span class="bp">self</span><span class="p">,</span> <span class="n">req</span><span class="p">,</span> <span class="n">out_grad</span><span class="p">,</span> <span class="n">in_data</span><span class="p">,</span> <span class="n">out_data</span><span class="p">,</span> <span class="n">in_grad</span><span class="p">,</span> <span class="n">aux</span><span class="p">):</span>
<span class="sd">"""Implements backward computation</span>
<span class="sd"> req : list of {'null', 'write', 'inplace', 'add'}, how to assign to in_grad</span>
<span class="sd"> out_grad : list of NDArray, gradient w.r.t. output data.</span>
<span class="sd"> in_grad : list of NDArray, gradient w.r.t. input data. This is the output buffer.</span>
<span class="sd"> """</span>
<span class="n">y</span> <span class="o">=</span> <span class="n">out_data</span><span class="p">[</span><span class="mi">0</span><span class="p">]</span><span class="o">.</span><span class="n">asnumpy</span><span class="p">()</span>
<span class="n">dy</span> <span class="o">=</span> <span class="n">out_grad</span><span class="p">[</span><span class="mi">0</span><span class="p">]</span><span class="o">.</span><span class="n">asnumpy</span><span class="p">()</span>
<span class="n">dx</span> <span class="o">=</span> <span class="n">dy</span><span class="o">*</span><span class="p">(</span><span class="mf">1.0</span> <span class="o">-</span> <span class="n">y</span><span class="p">)</span><span class="o">*</span><span class="n">y</span>
<span class="bp">self</span><span class="o">.</span><span class="n">assign</span><span class="p">(</span><span class="n">in_grad</span><span class="p">[</span><span class="mi">0</span><span class="p">],</span> <span class="n">req</span><span class="p">[</span><span class="mi">0</span><span class="p">],</span> <span class="n">mx</span><span class="o">.</span><span class="n">nd</span><span class="o">.</span><span class="n">array</span><span class="p">(</span><span class="n">dx</span><span class="p">))</span>
</pre></div>
</div>
</div>
<div class="section" id="register-custom-operator">
<span id="register-custom-operator"></span><h3>Register custom operator<a class="headerlink" href="#register-custom-operator" title="Permalink to this headline">¶</a></h3>
<p>Then we need to register the custom op and describe it’s properties like input and output shapes so that mxnet can recognize it. This is done by sub-classing <code class="docutils literal"><span class="pre">mx.operator.CustomOpProp</span></code>:</p>
<div class="highlight-python"><div class="highlight"><pre><span></span><span class="nd">@mx.operator.register</span><span class="p">(</span><span class="s2">"sigmoid"</span><span class="p">)</span> <span class="c1"># register with name "sigmoid"</span>
<span class="k">class</span> <span class="nc">SigmoidProp</span><span class="p">(</span><span class="n">mx</span><span class="o">.</span><span class="n">operator</span><span class="o">.</span><span class="n">CustomOpProp</span><span class="p">):</span>
<span class="k">def</span> <span class="fm">__init__</span><span class="p">(</span><span class="bp">self</span><span class="p">):</span>
<span class="nb">super</span><span class="p">(</span><span class="n">SigmoidProp</span><span class="p">,</span> <span class="bp">self</span><span class="p">)</span><span class="o">.</span><span class="fm">__init__</span><span class="p">(</span><span class="bp">True</span><span class="p">)</span>
<span class="k">def</span> <span class="nf">list_arguments</span><span class="p">(</span><span class="bp">self</span><span class="p">):</span>
<span class="c1"># this can be omitted if you only have 1 input.</span>
<span class="k">return</span> <span class="p">[</span><span class="s1">'data'</span><span class="p">]</span>
<span class="k">def</span> <span class="nf">list_outputs</span><span class="p">(</span><span class="bp">self</span><span class="p">):</span>
<span class="c1"># this can be omitted if you only have 1 output.</span>
<span class="k">return</span> <span class="p">[</span><span class="s1">'output'</span><span class="p">]</span>
<span class="k">def</span> <span class="nf">infer_shape</span><span class="p">(</span><span class="bp">self</span><span class="p">,</span> <span class="n">in_shapes</span><span class="p">):</span>
<span class="sd">"""Calculate output shapes from input shapes. This can be</span>
<span class="sd"> omited if all your inputs and outputs have the same shape.</span>
<span class="sd"> in_shapes : list of shape. Shape is described by a tuple of int.</span>
<span class="sd"> """</span>
<span class="n">data_shape</span> <span class="o">=</span> <span class="n">in_shapes</span><span class="p">[</span><span class="mi">0</span><span class="p">]</span>
<span class="n">output_shape</span> <span class="o">=</span> <span class="n">data_shape</span>
<span class="c1"># return 3 lists representing inputs shapes, outputs shapes, and aux data shapes.</span>
<span class="k">return</span> <span class="p">(</span><span class="n">data_shape</span><span class="p">,),</span> <span class="p">(</span><span class="n">output_shape</span><span class="p">,),</span> <span class="p">()</span>
<span class="k">def</span> <span class="nf">create_operator</span><span class="p">(</span><span class="bp">self</span><span class="p">,</span> <span class="n">ctx</span><span class="p">,</span> <span class="n">in_shapes</span><span class="p">,</span> <span class="n">in_dtypes</span><span class="p">):</span>
<span class="c1"># create and return the CustomOp class.</span>
<span class="k">return</span> <span class="n">Sigmoid</span><span class="p">()</span>
</pre></div>
</div>
</div>
<div class="section" id="example-usage">
<span id="example-usage"></span><h3>Example Usage<a class="headerlink" href="#example-usage" title="Permalink to this headline">¶</a></h3>
<p>We can now use this operator by calling <code class="docutils literal"><span class="pre">mx.nd.Custom</span></code>:</p>
<div class="highlight-python"><div class="highlight"><pre><span></span><span class="n">x</span> <span class="o">=</span> <span class="n">mx</span><span class="o">.</span><span class="n">nd</span><span class="o">.</span><span class="n">array</span><span class="p">([</span><span class="mi">0</span><span class="p">,</span> <span class="mi">1</span><span class="p">,</span> <span class="mi">2</span><span class="p">,</span> <span class="mi">3</span><span class="p">])</span>
<span class="c1"># attach gradient buffer to x for autograd</span>
<span class="n">x</span><span class="o">.</span><span class="n">attach_grad</span><span class="p">()</span>
<span class="c1"># forward in a record() section to save computation graph for backward</span>
<span class="c1"># see autograd tutorial to learn more.</span>
<span class="k">with</span> <span class="n">autograd</span><span class="o">.</span><span class="n">record</span><span class="p">():</span>
<span class="n">y</span> <span class="o">=</span> <span class="n">mx</span><span class="o">.</span><span class="n">nd</span><span class="o">.</span><span class="n">Custom</span><span class="p">(</span><span class="n">x</span><span class="p">,</span> <span class="n">op_type</span><span class="o">=</span><span class="s1">'sigmoid'</span><span class="p">)</span>
<span class="k">print</span><span class="p">(</span><span class="n">y</span><span class="p">)</span>
</pre></div>
</div>
<div class="highlight-python"><div class="highlight"><pre><span></span><span class="c1"># call backward computation</span>
<span class="n">y</span><span class="o">.</span><span class="n">backward</span><span class="p">()</span>
<span class="c1"># gradient is now saved to the grad buffer we attached previously</span>
<span class="k">print</span><span class="p">(</span><span class="n">x</span><span class="o">.</span><span class="n">grad</span><span class="p">)</span>
</pre></div>
</div>
</div>
</div>
<div class="section" id="parametrized-operator">
<span id="parametrized-operator"></span><h2>Parametrized Operator<a class="headerlink" href="#parametrized-operator" title="Permalink to this headline">¶</a></h2>
<p>In the second use case we implement an operator with learnable weights. We implement the dense (or fully connected) layer that has one input, one output, and two learnable parameters: weight and bias.</p>
<p>The dense operator performs a dot product between data and weight, then add bias to it.</p>
<div class="section" id="forward-backward-implementation">
<span id="id1"></span><h3>Forward & backward implementation<a class="headerlink" href="#forward-backward-implementation" title="Permalink to this headline">¶</a></h3>
<div class="highlight-python"><div class="highlight"><pre><span></span><span class="k">class</span> <span class="nc">Dense</span><span class="p">(</span><span class="n">mx</span><span class="o">.</span><span class="n">operator</span><span class="o">.</span><span class="n">CustomOp</span><span class="p">):</span>
<span class="k">def</span> <span class="fm">__init__</span><span class="p">(</span><span class="bp">self</span><span class="p">,</span> <span class="n">bias</span><span class="p">):</span>
<span class="bp">self</span><span class="o">.</span><span class="n">_bias</span> <span class="o">=</span> <span class="n">bias</span>
<span class="k">def</span> <span class="nf">forward</span><span class="p">(</span><span class="bp">self</span><span class="p">,</span> <span class="n">is_train</span><span class="p">,</span> <span class="n">req</span><span class="p">,</span> <span class="n">in_data</span><span class="p">,</span> <span class="n">out_data</span><span class="p">,</span> <span class="n">aux</span><span class="p">):</span>
<span class="n">x</span> <span class="o">=</span> <span class="n">in_data</span><span class="p">[</span><span class="mi">0</span><span class="p">]</span><span class="o">.</span><span class="n">asnumpy</span><span class="p">()</span>
<span class="n">weight</span> <span class="o">=</span> <span class="n">in_data</span><span class="p">[</span><span class="mi">1</span><span class="p">]</span><span class="o">.</span><span class="n">asnumpy</span><span class="p">()</span>
<span class="n">y</span> <span class="o">=</span> <span class="n">x</span><span class="o">.</span><span class="n">dot</span><span class="p">(</span><span class="n">weight</span><span class="o">.</span><span class="n">T</span><span class="p">)</span> <span class="o">+</span> <span class="bp">self</span><span class="o">.</span><span class="n">_bias</span>
<span class="bp">self</span><span class="o">.</span><span class="n">assign</span><span class="p">(</span><span class="n">out_data</span><span class="p">[</span><span class="mi">0</span><span class="p">],</span> <span class="n">req</span><span class="p">[</span><span class="mi">0</span><span class="p">],</span> <span class="n">mx</span><span class="o">.</span><span class="n">nd</span><span class="o">.</span><span class="n">array</span><span class="p">(</span><span class="n">y</span><span class="p">))</span>
<span class="k">def</span> <span class="nf">backward</span><span class="p">(</span><span class="bp">self</span><span class="p">,</span> <span class="n">req</span><span class="p">,</span> <span class="n">out_grad</span><span class="p">,</span> <span class="n">in_data</span><span class="p">,</span> <span class="n">out_data</span><span class="p">,</span> <span class="n">in_grad</span><span class="p">,</span> <span class="n">aux</span><span class="p">):</span>
<span class="n">x</span> <span class="o">=</span> <span class="n">in_data</span><span class="p">[</span><span class="mi">0</span><span class="p">]</span><span class="o">.</span><span class="n">asnumpy</span><span class="p">()</span>
<span class="n">dy</span> <span class="o">=</span> <span class="n">out_grad</span><span class="p">[</span><span class="mi">0</span><span class="p">]</span><span class="o">.</span><span class="n">asnumpy</span><span class="p">()</span>
<span class="n">dx</span> <span class="o">=</span> <span class="n">dy</span><span class="o">.</span><span class="n">T</span><span class="o">.</span><span class="n">dot</span><span class="p">(</span><span class="n">x</span><span class="p">)</span>
<span class="bp">self</span><span class="o">.</span><span class="n">assign</span><span class="p">(</span><span class="n">in_grad</span><span class="p">[</span><span class="mi">0</span><span class="p">],</span> <span class="n">req</span><span class="p">[</span><span class="mi">0</span><span class="p">],</span> <span class="n">mx</span><span class="o">.</span><span class="n">nd</span><span class="o">.</span><span class="n">array</span><span class="p">(</span><span class="n">dx</span><span class="p">))</span>
</pre></div>
</div>
</div>
<div class="section" id="registration">
<span id="registration"></span><h3>Registration<a class="headerlink" href="#registration" title="Permalink to this headline">¶</a></h3>
<div class="highlight-python"><div class="highlight"><pre><span></span><span class="nd">@mx.operator.register</span><span class="p">(</span><span class="s2">"dense"</span><span class="p">)</span> <span class="c1"># register with name "sigmoid"</span>
<span class="k">class</span> <span class="nc">DenseProp</span><span class="p">(</span><span class="n">mx</span><span class="o">.</span><span class="n">operator</span><span class="o">.</span><span class="n">CustomOpProp</span><span class="p">):</span>
<span class="k">def</span> <span class="fm">__init__</span><span class="p">(</span><span class="bp">self</span><span class="p">,</span> <span class="n">bias</span><span class="p">):</span>
<span class="nb">super</span><span class="p">(</span><span class="n">DenseProp</span><span class="p">,</span> <span class="bp">self</span><span class="p">)</span><span class="o">.</span><span class="fm">__init__</span><span class="p">(</span><span class="bp">True</span><span class="p">)</span>
<span class="c1"># we use constant bias here to illustrate how to pass arguments</span>
<span class="c1"># to operators. All arguments are in string format so you need</span>
<span class="c1"># to convert them back to the type you want.</span>
<span class="bp">self</span><span class="o">.</span><span class="n">_bias</span> <span class="o">=</span> <span class="nb">float</span><span class="p">(</span><span class="n">bias</span><span class="p">)</span>
<span class="k">def</span> <span class="nf">list_arguments</span><span class="p">(</span><span class="bp">self</span><span class="p">):</span>
<span class="k">return</span> <span class="p">[</span><span class="s1">'data'</span><span class="p">,</span> <span class="s1">'weight'</span><span class="p">]</span>
<span class="k">def</span> <span class="nf">list_outputs</span><span class="p">(</span><span class="bp">self</span><span class="p">):</span>
<span class="c1"># this can be omitted if you only have 1 output.</span>
<span class="k">return</span> <span class="p">[</span><span class="s1">'output'</span><span class="p">]</span>
<span class="k">def</span> <span class="nf">infer_shape</span><span class="p">(</span><span class="bp">self</span><span class="p">,</span> <span class="n">in_shapes</span><span class="p">):</span>
<span class="n">data_shape</span> <span class="o">=</span> <span class="n">in_shapes</span><span class="p">[</span><span class="mi">0</span><span class="p">]</span>
<span class="n">weight_shape</span> <span class="o">=</span> <span class="n">in_shapes</span><span class="p">[</span><span class="mi">1</span><span class="p">]</span>
<span class="n">output_shape</span> <span class="o">=</span> <span class="p">(</span><span class="n">data_shape</span><span class="p">[</span><span class="mi">0</span><span class="p">],</span> <span class="n">weight_shape</span><span class="p">[</span><span class="mi">0</span><span class="p">])</span>
<span class="c1"># return 3 lists representing inputs shapes, outputs shapes, and aux data shapes.</span>
<span class="k">return</span> <span class="p">(</span><span class="n">data_shape</span><span class="p">,</span> <span class="n">weight_shape</span><span class="p">),</span> <span class="p">(</span><span class="n">output_shape</span><span class="p">,),</span> <span class="p">()</span>
<span class="k">def</span> <span class="nf">create_operator</span><span class="p">(</span><span class="bp">self</span><span class="p">,</span> <span class="n">ctx</span><span class="p">,</span> <span class="n">in_shapes</span><span class="p">,</span> <span class="n">in_dtypes</span><span class="p">):</span>
<span class="c1"># create and return the CustomOp class.</span>
<span class="k">return</span> <span class="n">Dense</span><span class="p">(</span><span class="bp">self</span><span class="o">.</span><span class="n">_bias</span><span class="p">)</span>
</pre></div>
</div>
</div>
<div class="section" id="use-customop-together-with-block">
<span id="use-customop-together-with-block"></span><h3>Use CustomOp together with Block<a class="headerlink" href="#use-customop-together-with-block" title="Permalink to this headline">¶</a></h3>
<p>Parameterized CustomOp are ususally used together with Blocks, which holds the parameter.</p>
<div class="highlight-python"><div class="highlight"><pre><span></span><span class="k">class</span> <span class="nc">DenseBlock</span><span class="p">(</span><span class="n">mx</span><span class="o">.</span><span class="n">gluon</span><span class="o">.</span><span class="n">Block</span><span class="p">):</span>
<span class="k">def</span> <span class="fm">__init__</span><span class="p">(</span><span class="bp">self</span><span class="p">,</span> <span class="n">in_channels</span><span class="p">,</span> <span class="n">channels</span><span class="p">,</span> <span class="n">bias</span><span class="p">,</span> <span class="o">**</span><span class="n">kwargs</span><span class="p">):</span>
<span class="nb">super</span><span class="p">(</span><span class="n">DenseBlock</span><span class="p">,</span> <span class="bp">self</span><span class="p">)</span><span class="o">.</span><span class="fm">__init__</span><span class="p">(</span><span class="o">**</span><span class="n">kwargs</span><span class="p">)</span>
<span class="bp">self</span><span class="o">.</span><span class="n">_bias</span> <span class="o">=</span> <span class="n">bias</span>
<span class="bp">self</span><span class="o">.</span><span class="n">weight</span> <span class="o">=</span> <span class="bp">self</span><span class="o">.</span><span class="n">params</span><span class="o">.</span><span class="n">get</span><span class="p">(</span><span class="s1">'weight'</span><span class="p">,</span> <span class="n">shape</span><span class="o">=</span><span class="p">(</span><span class="n">channels</span><span class="p">,</span> <span class="n">in_channels</span><span class="p">))</span>
<span class="k">def</span> <span class="nf">forward</span><span class="p">(</span><span class="bp">self</span><span class="p">,</span> <span class="n">x</span><span class="p">):</span>
<span class="n">ctx</span> <span class="o">=</span> <span class="n">x</span><span class="o">.</span><span class="n">context</span>
<span class="k">return</span> <span class="n">mx</span><span class="o">.</span><span class="n">nd</span><span class="o">.</span><span class="n">Custom</span><span class="p">(</span><span class="n">x</span><span class="p">,</span> <span class="bp">self</span><span class="o">.</span><span class="n">weight</span><span class="o">.</span><span class="n">data</span><span class="p">(</span><span class="n">ctx</span><span class="p">),</span> <span class="n">bias</span><span class="o">=</span><span class="bp">self</span><span class="o">.</span><span class="n">_bias</span><span class="p">,</span> <span class="n">op_type</span><span class="o">=</span><span class="s1">'dense'</span><span class="p">)</span>
</pre></div>
</div>
</div>
<div class="section" id="example-usage">
<span id="id2"></span><h3>Example usage<a class="headerlink" href="#example-usage" title="Permalink to this headline">¶</a></h3>
<div class="highlight-python"><div class="highlight"><pre><span></span><span class="n">dense</span> <span class="o">=</span> <span class="n">DenseBlock</span><span class="p">(</span><span class="mi">3</span><span class="p">,</span> <span class="mi">5</span><span class="p">,</span> <span class="mf">0.1</span><span class="p">)</span>
<span class="n">dense</span><span class="o">.</span><span class="n">initialize</span><span class="p">()</span>
<span class="n">x</span> <span class="o">=</span> <span class="n">mx</span><span class="o">.</span><span class="n">nd</span><span class="o">.</span><span class="n">uniform</span><span class="p">(</span><span class="n">shape</span><span class="o">=</span><span class="p">(</span><span class="mi">4</span><span class="p">,</span> <span class="mi">3</span><span class="p">))</span>
<span class="n">y</span> <span class="o">=</span> <span class="n">dense</span><span class="p">(</span><span class="n">x</span><span class="p">)</span>
<span class="k">print</span><span class="p">(</span><span class="n">y</span><span class="p">)</span>
</pre></div>
</div>
</div>
</div>
</div>
</div>
</div>
<div aria-label="main navigation" class="sphinxsidebar rightsidebar" role="navigation">
<div class="sphinxsidebarwrapper">
<h3><a href="../../index.html">Table Of Contents</a></h3>
<ul>
<li><a class="reference internal" href="#">Creating custom operators with numpy</a><ul>
<li><a class="reference internal" href="#parameter-less-operators">Parameter-less operators</a><ul>
<li><a class="reference internal" href="#forward-backward-implementation">Forward & backward implementation</a></li>
<li><a class="reference internal" href="#register-custom-operator">Register custom operator</a></li>
<li><a class="reference internal" href="#example-usage">Example Usage</a></li>
</ul>
</li>
<li><a class="reference internal" href="#parametrized-operator">Parametrized Operator</a><ul>
<li><a class="reference internal" href="#forward-backward-implementation">Forward & backward implementation</a></li>
<li><a class="reference internal" href="#registration">Registration</a></li>
<li><a class="reference internal" href="#use-customop-together-with-block">Use CustomOp together with Block</a></li>
<li><a class="reference internal" href="#example-usage">Example usage</a></li>
</ul>
</li>
</ul>
</li>
</ul>
</div>
</div>
</div><div class="footer">
<div class="section-disclaimer">
<div class="container">
<div>
<img height="60" src="https://raw.githubusercontent.com/dmlc/web-data/master/mxnet/image/apache_incubator_logo.png"/>
<p>
Apache MXNet is an effort undergoing incubation at The Apache Software Foundation (ASF), <strong>sponsored by the <i>Apache Incubator</i></strong>. Incubation is required of all newly accepted projects until a further review indicates that the infrastructure, communications, and decision making process have stabilized in a manner consistent with other successful ASF projects. While incubation status is not necessarily a reflection of the completeness or stability of the code, it does indicate that the project has yet to be fully endorsed by the ASF.
</p>
<p>
"Copyright © 2017-2018, The Apache Software Foundation
Apache MXNet, MXNet, Apache, the Apache feather, and the Apache MXNet project logo are either registered trademarks or trademarks of the Apache Software Foundation."
</p>
</div>
</div>
</div>
</div> <!-- pagename != index -->
</div>
<script crossorigin="anonymous" integrity="sha384-0mSbJDEHialfmuBBQP6A4Qrprq5OVfW37PRR3j5ELqxss1yVqOtnepnHVP9aJ7xS" src="https://maxcdn.bootstrapcdn.com/bootstrap/3.3.6/js/bootstrap.min.js"></script>
<script src="../../_static/js/sidebar.js" type="text/javascript"></script>
<script src="../../_static/js/search.js" type="text/javascript"></script>
<script src="../../_static/js/navbar.js" type="text/javascript"></script>
<script src="../../_static/js/clipboard.min.js" type="text/javascript"></script>
<script src="../../_static/js/copycode.js" type="text/javascript"></script>
<script src="../../_static/js/page.js" type="text/javascript"></script>
<script src="../../_static/js/docversion.js" type="text/javascript"></script>
<script type="text/javascript">
$('body').ready(function () {
$('body').css('visibility', 'visible');
});
</script>
</body>
</html>