versions/0.11.0/tutorials/gluon/ndarray.html (346 lines of code) (raw):
<!DOCTYPE html>
<html lang="en">
<head>
<meta charset="utf-8"/>
<meta content="IE=edge" http-equiv="X-UA-Compatible"/>
<meta content="width=device-width, initial-scale=1" name="viewport"/>
<meta content="NDArray - Scientific computing on CPU and GPU" property="og:title">
<meta content="https://raw.githubusercontent.com/dmlc/web-data/master/mxnet/image/og-logo.png" property="og:image">
<meta content="https://raw.githubusercontent.com/dmlc/web-data/master/mxnet/image/og-logo.png" property="og:image:secure_url">
<meta content="NDArray - Scientific computing on CPU and GPU" property="og:description"/>
<title>NDArray - Scientific computing on CPU and GPU — mxnet documentation</title>
<link crossorigin="anonymous" href="https://maxcdn.bootstrapcdn.com/bootstrap/3.3.6/css/bootstrap.min.css" integrity="sha384-1q8mTJOASx8j1Au+a5WDVnPi2lkFfwwEAa8hDDdjZlpLegxhjVME1fgjWPGmkzs7" rel="stylesheet"/>
<link href="https://maxcdn.bootstrapcdn.com/font-awesome/4.5.0/css/font-awesome.min.css" rel="stylesheet"/>
<link href="../../_static/basic.css" rel="stylesheet" type="text/css">
<link href="../../_static/pygments.css" rel="stylesheet" type="text/css">
<link href="../../_static/mxnet.css" rel="stylesheet" type="text/css"/>
<script type="text/javascript">
var DOCUMENTATION_OPTIONS = {
URL_ROOT: '../../',
VERSION: '',
COLLAPSE_INDEX: false,
FILE_SUFFIX: '.html',
HAS_SOURCE: true,
SOURCELINK_SUFFIX: '.txt'
};
</script>
<script src="https://code.jquery.com/jquery-1.11.1.min.js" type="text/javascript"></script>
<script src="../../_static/underscore.js" type="text/javascript"></script>
<script src="../../_static/searchtools_custom.js" type="text/javascript"></script>
<script src="../../_static/doctools.js" type="text/javascript"></script>
<script src="../../_static/selectlang.js" type="text/javascript"></script>
<script src="https://cdnjs.cloudflare.com/ajax/libs/mathjax/2.7.1/MathJax.js?config=TeX-AMS-MML_HTMLorMML" type="text/javascript"></script>
<script type="text/javascript"> jQuery(function() { Search.loadIndex("/versions/0.11.0/searchindex.js"); Search.init();}); </script>
<!-- -->
<!-- <script type="text/javascript" src="../../_static/jquery.js"></script> -->
<!-- -->
<!-- <script type="text/javascript" src="../../_static/underscore.js"></script> -->
<!-- -->
<!-- <script type="text/javascript" src="../../_static/doctools.js"></script> -->
<!-- -->
<!-- <script type="text/javascript" src="https://cdnjs.cloudflare.com/ajax/libs/mathjax/2.7.0/MathJax.js?config=TeX-AMS-MML_HTMLorMML"></script> -->
<!-- -->
<link href="../../genindex.html" rel="index" title="Index">
<link href="../../search.html" rel="search" title="Search"/>
<link href="https://raw.githubusercontent.com/dmlc/web-data/master/mxnet/image/mxnet-icon.png" rel="icon" type="image/png"/>
</link></link></link></meta></meta></meta></head>
<body background="https://raw.githubusercontent.com/dmlc/web-data/master/mxnet/image/mxnet-background-compressed.jpeg" role="document">
<div class="content-block"><div class="navbar navbar-fixed-top">
<div class="container" id="navContainer">
<div class="innder" id="header-inner">
<h1 id="logo-wrap">
<a href="../../" id="logo"><img src="https://raw.githubusercontent.com/dmlc/web-data/master/mxnet/image/mxnet_logo.png"/></a>
</h1>
<nav class="nav-bar" id="main-nav">
<a class="main-nav-link" href="/versions/0.11.0/get_started/install.html">Install</a>
<span id="dropdown-menu-position-anchor">
<a aria-expanded="true" aria-haspopup="true" class="main-nav-link dropdown-toggle" data-toggle="dropdown" href="#" role="button">Gluon <span class="caret"></span></a>
<ul class="dropdown-menu navbar-menu" id="package-dropdown-menu">
<li><a class="main-nav-link" href="/versions/0.11.0/tutorials/gluon/gluon.html">About</a></li>
<li><a class="main-nav-link" href="https://www.d2l.ai/">Dive into Deep Learning</a></li>
<li><a class="main-nav-link" href="https://gluon-cv.mxnet.io">GluonCV Toolkit</a></li>
<li><a class="main-nav-link" href="https://gluon-nlp.mxnet.io/">GluonNLP Toolkit</a></li>
</ul>
</span>
<span id="dropdown-menu-position-anchor">
<a aria-expanded="true" aria-haspopup="true" class="main-nav-link dropdown-toggle" data-toggle="dropdown" href="#" role="button">API <span class="caret"></span></a>
<ul class="dropdown-menu navbar-menu" id="package-dropdown-menu">
<li><a class="main-nav-link" href="/versions/0.11.0/api/python/index.html">Python</a></li>
<li><a class="main-nav-link" href="/versions/0.11.0/api/c++/index.html">C++</a></li>
<li><a class="main-nav-link" href="/versions/0.11.0/api/julia/index.html">Julia</a></li>
<li><a class="main-nav-link" href="/versions/0.11.0/api/perl/index.html">Perl</a></li>
<li><a class="main-nav-link" href="/versions/0.11.0/api/r/index.html">R</a></li>
<li><a class="main-nav-link" href="/versions/0.11.0/api/scala/index.html">Scala</a></li>
</ul>
</span>
<span id="dropdown-menu-position-anchor-docs">
<a aria-expanded="true" aria-haspopup="true" class="main-nav-link dropdown-toggle" data-toggle="dropdown" href="#" role="button">Docs <span class="caret"></span></a>
<ul class="dropdown-menu navbar-menu" id="package-dropdown-menu-docs">
<li><a class="main-nav-link" href="/versions/0.11.0/how_to/faq.html">FAQ</a></li>
<li><a class="main-nav-link" href="/versions/0.11.0/tutorials/index.html">Tutorials</a>
<li><a class="main-nav-link" href="https://github.com/apache/incubator-mxnet/tree/v0.11.0/example">Examples</a></li>
<li><a class="main-nav-link" href="/versions/0.11.0/architecture/index.html">Architecture</a></li>
<li><a class="main-nav-link" href="https://cwiki.apache.org/confluence/display/MXNET/Apache+MXNet+Home">Developer Wiki</a></li>
<li><a class="main-nav-link" href="/versions/0.11.0/model_zoo/index.html">Model Zoo</a></li>
<li><a class="main-nav-link" href="https://github.com/onnx/onnx-mxnet">ONNX</a></li>
</li></ul>
</span>
<span id="dropdown-menu-position-anchor-community">
<a aria-expanded="true" aria-haspopup="true" class="main-nav-link dropdown-toggle" data-toggle="dropdown" href="#" role="button">Community <span class="caret"></span></a>
<ul class="dropdown-menu navbar-menu" id="package-dropdown-menu-community">
<li><a class="main-nav-link" href="http://discuss.mxnet.io">Forum</a></li>
<li><a class="main-nav-link" href="https://github.com/apache/incubator-mxnet/tree/v0.11.0">Github</a></li>
<li><a class="main-nav-link" href="/versions/0.11.0/community/contribute.html">Contribute</a></li>
</ul>
</span>
<span id="dropdown-menu-position-anchor-version" style="position: relative"><a href="#" class="main-nav-link dropdown-toggle" data-toggle="dropdown" role="button" aria-haspopup="true" aria-expanded="true">0.11.0<span class="caret"></span></a><ul id="package-dropdown-menu" class="dropdown-menu"><li><a href="/">master</a></li><li><a href="/versions/1.7.0/">1.7.0</a></li><li><a href=/versions/1.6.0/>1.6.0</a></li><li><a href=/versions/1.5.0/>1.5.0</a></li><li><a href=/versions/1.4.1/>1.4.1</a></li><li><a href=/versions/1.3.1/>1.3.1</a></li><li><a href=/versions/1.2.1/>1.2.1</a></li><li><a href=/versions/1.1.0/>1.1.0</a></li><li><a href=/versions/1.0.0/>1.0.0</a></li><li><a href=/versions/0.12.1/>0.12.1</a></li><li><a href=/versions/0.11.0/>0.11.0</a></li></ul></span></nav>
<script> function getRootPath(){ return "../../" } </script>
<div class="burgerIcon dropdown">
<a class="dropdown-toggle" data-toggle="dropdown" href="#" role="button">☰</a>
<ul class="dropdown-menu" id="burgerMenu">
<li><a href="/versions/0.11.0/get_started/install.html">Install</a></li>
<li><a class="main-nav-link" href="/versions/0.11.0/tutorials/index.html">Tutorials</a></li>
<li class="dropdown-submenu dropdown">
<a aria-expanded="true" aria-haspopup="true" class="dropdown-toggle burger-link" data-toggle="dropdown" href="#" tabindex="-1">Gluon</a>
<ul class="dropdown-menu navbar-menu" id="package-dropdown-menu">
<li><a class="main-nav-link" href="/versions/0.11.0/tutorials/gluon/gluon.html">About</a></li>
<li><a class="main-nav-link" href="http://gluon.mxnet.io">The Straight Dope (Tutorials)</a></li>
<li><a class="main-nav-link" href="https://gluon-cv.mxnet.io">GluonCV Toolkit</a></li>
<li><a class="main-nav-link" href="https://gluon-nlp.mxnet.io/">GluonNLP Toolkit</a></li>
</ul>
</li>
<li class="dropdown-submenu">
<a aria-expanded="true" aria-haspopup="true" class="dropdown-toggle burger-link" data-toggle="dropdown" href="#" tabindex="-1">API</a>
<ul class="dropdown-menu">
<li><a class="main-nav-link" href="/versions/0.11.0/api/python/index.html">Python</a></li>
<li><a class="main-nav-link" href="/versions/0.11.0/api/c++/index.html">C++</a></li>
<li><a class="main-nav-link" href="/versions/0.11.0/api/julia/index.html">Julia</a></li>
<li><a class="main-nav-link" href="/versions/0.11.0/api/perl/index.html">Perl</a></li>
<li><a class="main-nav-link" href="/versions/0.11.0/api/r/index.html">R</a></li>
<li><a class="main-nav-link" href="/versions/0.11.0/api/scala/index.html">Scala</a></li>
</ul>
</li>
<li class="dropdown-submenu">
<a aria-expanded="true" aria-haspopup="true" class="dropdown-toggle burger-link" data-toggle="dropdown" href="#" tabindex="-1">Docs</a>
<ul class="dropdown-menu">
<li><a href="/versions/0.11.0/how_to/faq.html" tabindex="-1">FAQ</a></li>
<li><a href="/versions/0.11.0/tutorials/index.html" tabindex="-1">Tutorials</a></li>
<li><a href="https://github.com/apache/incubator-mxnet/tree/v0.11.0/example" tabindex="-1">Examples</a></li>
<li><a href="/versions/0.11.0/architecture/index.html" tabindex="-1">Architecture</a></li>
<li><a href="https://cwiki.apache.org/confluence/display/MXNET/Apache+MXNet+Home" tabindex="-1">Developer Wiki</a></li>
<li><a href="/versions/0.11.0/model_zoo/index.html" tabindex="-1">Gluon Model Zoo</a></li>
<li><a href="https://github.com/onnx/onnx-mxnet" tabindex="-1">ONNX</a></li>
</ul>
</li>
<li class="dropdown-submenu dropdown">
<a aria-haspopup="true" class="dropdown-toggle burger-link" data-toggle="dropdown" href="#" role="button" tabindex="-1">Community</a>
<ul class="dropdown-menu">
<li><a href="http://discuss.mxnet.io" tabindex="-1">Forum</a></li>
<li><a href="https://github.com/apache/incubator-mxnet/tree/v0.11.0" tabindex="-1">Github</a></li>
<li><a href="/versions/0.11.0/community/contribute.html" tabindex="-1">Contribute</a></li>
</ul>
</li>
<li id="dropdown-menu-position-anchor-version-mobile" class="dropdown-submenu" style="position: relative"><a href="#" tabindex="-1">0.11.0</a><ul class="dropdown-menu"><li><a tabindex="-1" href=/>master</a></li><li><a tabindex="-1" href=/versions/1.6.0/>1.6.0</a></li><li><a tabindex="-1" href=/versions/1.5.0/>1.5.0</a></li><li><a tabindex="-1" href=/versions/1.4.1/>1.4.1</a></li><li><a tabindex="-1" href=/versions/1.3.1/>1.3.1</a></li><li><a tabindex="-1" href=/versions/1.2.1/>1.2.1</a></li><li><a tabindex="-1" href=/versions/1.1.0/>1.1.0</a></li><li><a tabindex="-1" href=/versions/1.0.0/>1.0.0</a></li><li><a tabindex="-1" href=/versions/0.12.1/>0.12.1</a></li><li><a tabindex="-1" href=/versions/0.11.0/>0.11.0</a></li></ul></li></ul>
</div>
<div class="plusIcon dropdown">
<a class="dropdown-toggle" data-toggle="dropdown" href="#" role="button"><span aria-hidden="true" class="glyphicon glyphicon-plus"></span></a>
<ul class="dropdown-menu dropdown-menu-right" id="plusMenu"></ul>
</div>
<div id="search-input-wrap">
<form action="../../search.html" autocomplete="off" class="" method="get" role="search">
<div class="form-group inner-addon left-addon">
<i class="glyphicon glyphicon-search"></i>
<input class="form-control" name="q" placeholder="Search" type="text"/>
</div>
<input name="check_keywords" type="hidden" value="yes">
<input name="area" type="hidden" value="default"/>
</input></form>
<div id="search-preview"></div>
</div>
<div id="searchIcon">
<span aria-hidden="true" class="glyphicon glyphicon-search"></span>
</div>
<!-- <div id="lang-select-wrap"> -->
<!-- <label id="lang-select-label"> -->
<!-- <\!-- <i class="fa fa-globe"></i> -\-> -->
<!-- <span></span> -->
<!-- </label> -->
<!-- <select id="lang-select"> -->
<!-- <option value="en">Eng</option> -->
<!-- <option value="zh">中文</option> -->
<!-- </select> -->
<!-- </div> -->
<!-- <a id="mobile-nav-toggle">
<span class="mobile-nav-toggle-bar"></span>
<span class="mobile-nav-toggle-bar"></span>
<span class="mobile-nav-toggle-bar"></span>
</a> -->
</div>
</div>
</div>
<script type="text/javascript">
$('body').css('background', 'white');
</script>
<div class="container">
<div class="row">
<div aria-label="main navigation" class="sphinxsidebar leftsidebar" role="navigation">
<div class="sphinxsidebarwrapper">
<ul>
<li class="toctree-l1"><a class="reference internal" href="../../api/python/index.html">Python Documents</a></li>
<li class="toctree-l1"><a class="reference internal" href="../../api/r/index.html">R Documents</a></li>
<li class="toctree-l1"><a class="reference internal" href="../../api/julia/index.html">Julia Documents</a></li>
<li class="toctree-l1"><a class="reference internal" href="../../api/c++/index.html">C++ Documents</a></li>
<li class="toctree-l1"><a class="reference internal" href="../../api/scala/index.html">Scala Documents</a></li>
<li class="toctree-l1"><a class="reference internal" href="../../api/perl/index.html">Perl Documents</a></li>
<li class="toctree-l1"><a class="reference internal" href="../../how_to/index.html">HowTo Documents</a></li>
<li class="toctree-l1"><a class="reference internal" href="../../architecture/index.html">System Documents</a></li>
<li class="toctree-l1"><a class="reference internal" href="../index.html">Tutorials</a></li>
</ul>
</div>
</div>
<div class="content">
<div class="page-tracker"></div>
<div class="section" id="ndarray-scientific-computing-on-cpu-and-gpu">
<span id="ndarray-scientific-computing-on-cpu-and-gpu"></span><h1>NDArray - Scientific computing on CPU and GPU<a class="headerlink" href="#ndarray-scientific-computing-on-cpu-and-gpu" title="Permalink to this headline">¶</a></h1>
<p>NDArray is a tensor data structure similar to numpy’s multi-dimensional array.
In addition, it supports asynchronous computation on CPU and GPU.</p>
<p>First, let’s import MXNet:</p>
<div class="highlight-python"><div class="highlight"><pre><span></span><span class="kn">from</span> <span class="nn">__future__</span> <span class="kn">import</span> <span class="n">print_function</span>
<span class="kn">import</span> <span class="nn">numpy</span> <span class="kn">as</span> <span class="nn">np</span>
<span class="kn">import</span> <span class="nn">mxnet</span> <span class="kn">as</span> <span class="nn">mx</span>
</pre></div>
</div>
<div class="section" id="creating-ndarray">
<span id="creating-ndarray"></span><h2>Creating NDArray<a class="headerlink" href="#creating-ndarray" title="Permalink to this headline">¶</a></h2>
<p>There are many ways to create NDArray.</p>
<p>Construct from (nested) list:</p>
<div class="highlight-python"><div class="highlight"><pre><span></span><span class="n">x</span> <span class="o">=</span> <span class="n">mx</span><span class="o">.</span><span class="n">nd</span><span class="o">.</span><span class="n">array</span><span class="p">([[</span><span class="mi">1</span><span class="p">,</span> <span class="mi">2</span><span class="p">,</span> <span class="mi">3</span><span class="p">],</span> <span class="p">[</span><span class="mi">4</span><span class="p">,</span> <span class="mi">5</span><span class="p">,</span> <span class="mi">6</span><span class="p">]])</span>
<span class="k">print</span><span class="p">(</span><span class="n">x</span><span class="p">)</span>
</pre></div>
</div>
<p>Construct from numpy array:</p>
<div class="highlight-python"><div class="highlight"><pre><span></span><span class="n">x_numpy</span> <span class="o">=</span> <span class="n">np</span><span class="o">.</span><span class="n">ones</span><span class="p">((</span><span class="mi">2</span><span class="p">,</span> <span class="mi">3</span><span class="p">))</span>
<span class="n">x</span> <span class="o">=</span> <span class="n">mx</span><span class="o">.</span><span class="n">nd</span><span class="o">.</span><span class="n">array</span><span class="p">(</span><span class="n">x_numpy</span><span class="p">)</span>
<span class="k">print</span><span class="p">(</span><span class="n">x</span><span class="p">)</span>
</pre></div>
</div>
<p>Array construction routines:</p>
<div class="highlight-python"><div class="highlight"><pre><span></span><span class="c1"># create an 2x3 array of ones</span>
<span class="n">x</span> <span class="o">=</span> <span class="n">mx</span><span class="o">.</span><span class="n">nd</span><span class="o">.</span><span class="n">ones</span><span class="p">((</span><span class="mi">2</span><span class="p">,</span> <span class="mi">3</span><span class="p">))</span>
<span class="k">print</span><span class="p">(</span><span class="n">x</span><span class="p">)</span>
<span class="c1"># create an 2x3 array of zeros</span>
<span class="n">x</span> <span class="o">=</span> <span class="n">mx</span><span class="o">.</span><span class="n">nd</span><span class="o">.</span><span class="n">zeros</span><span class="p">((</span><span class="mi">2</span><span class="p">,</span> <span class="mi">3</span><span class="p">))</span>
<span class="k">print</span><span class="p">(</span><span class="n">x</span><span class="p">)</span>
<span class="c1"># create an 1d-array of 0 to 5 and reshape to 2x3</span>
<span class="n">x</span> <span class="o">=</span> <span class="n">mx</span><span class="o">.</span><span class="n">nd</span><span class="o">.</span><span class="n">arange</span><span class="p">(</span><span class="mi">6</span><span class="p">)</span><span class="o">.</span><span class="n">reshape</span><span class="p">((</span><span class="mi">2</span><span class="p">,</span> <span class="mi">3</span><span class="p">))</span>
<span class="k">print</span><span class="p">(</span><span class="n">x</span><span class="p">)</span>
</pre></div>
</div>
<p>You can convert an NDArray to numpy array to retrieve its data with <code class="docutils literal"><span class="pre">.asnumpy()</span></code>:</p>
<div class="highlight-python"><div class="highlight"><pre><span></span><span class="n">z</span> <span class="o">=</span> <span class="n">x</span><span class="o">.</span><span class="n">asnumpy</span><span class="p">()</span>
<span class="k">print</span><span class="p">(</span><span class="n">z</span><span class="p">)</span>
</pre></div>
</div>
</div>
<div class="section" id="basic-attributes">
<span id="basic-attributes"></span><h2>Basic attributes<a class="headerlink" href="#basic-attributes" title="Permalink to this headline">¶</a></h2>
<p>NDArray has some basic attributes that you often want to query:</p>
<p><strong>NDArray.shape</strong>: The dimensions of the array. It is a tuple of integers
indicating the length of the array along each axis. For a matrix with <code class="docutils literal"><span class="pre">n</span></code> rows
and <code class="docutils literal"><span class="pre">m</span></code> columns, its <code class="docutils literal"><span class="pre">shape</span></code> will be <code class="docutils literal"><span class="pre">(n,</span> <span class="pre">m)</span></code>.</p>
<div class="highlight-python"><div class="highlight"><pre><span></span><span class="k">print</span><span class="p">(</span><span class="s1">'x.shape:'</span><span class="p">,</span> <span class="n">x</span><span class="o">.</span><span class="n">shape</span><span class="p">)</span>
</pre></div>
</div>
<p><strong>NDArray.dtype</strong>: A <code class="docutils literal"><span class="pre">numpy</span></code> <em>type</em> object describing the type of array
elements.</p>
<div class="highlight-python"><div class="highlight"><pre><span></span><span class="k">print</span><span class="p">(</span><span class="s1">'x.dtype:'</span><span class="p">,</span> <span class="n">x</span><span class="o">.</span><span class="n">dtype</span><span class="p">)</span>
</pre></div>
</div>
<p><strong>NDArray.size</strong>: the total number of components in the array - equals to the
product of the components of its <code class="docutils literal"><span class="pre">shape</span></code></p>
<div class="highlight-python"><div class="highlight"><pre><span></span><span class="k">print</span><span class="p">(</span><span class="s1">'x.size:'</span><span class="p">,</span> <span class="n">x</span><span class="o">.</span><span class="n">size</span><span class="p">)</span>
</pre></div>
</div>
<p><strong>NDArray.context</strong>: The device on which this array is stored, e.g. <code class="docutils literal"><span class="pre">mx.cpu()</span></code>
or <code class="docutils literal"><span class="pre">mx.gpu(1)</span></code>.</p>
<div class="highlight-python"><div class="highlight"><pre><span></span><span class="k">print</span><span class="p">(</span><span class="s1">'x.context:'</span><span class="p">,</span> <span class="n">x</span><span class="o">.</span><span class="n">context</span><span class="p">)</span>
</pre></div>
</div>
</div>
<div class="section" id="ndarray-operations">
<span id="ndarray-operations"></span><h2>NDArray Operations<a class="headerlink" href="#ndarray-operations" title="Permalink to this headline">¶</a></h2>
<p>NDArray supports a wide range of operations. Simple operations can be called
with python syntax:</p>
<div class="highlight-python"><div class="highlight"><pre><span></span><span class="n">x</span> <span class="o">=</span> <span class="n">mx</span><span class="o">.</span><span class="n">nd</span><span class="o">.</span><span class="n">array</span><span class="p">([[</span><span class="mi">1</span><span class="p">,</span> <span class="mi">2</span><span class="p">],</span> <span class="p">[</span><span class="mi">3</span><span class="p">,</span> <span class="mi">4</span><span class="p">]])</span>
<span class="n">y</span> <span class="o">=</span> <span class="n">mx</span><span class="o">.</span><span class="n">nd</span><span class="o">.</span><span class="n">array</span><span class="p">([[</span><span class="mi">4</span><span class="p">,</span> <span class="mi">3</span><span class="p">],</span> <span class="p">[</span><span class="mi">2</span><span class="p">,</span> <span class="mi">1</span><span class="p">]])</span>
<span class="k">print</span><span class="p">(</span><span class="n">x</span> <span class="o">+</span> <span class="n">y</span><span class="p">)</span>
</pre></div>
</div>
<p>You can also call operators from the <code class="docutils literal"><span class="pre">mxnet.ndarray</span></code> (or <code class="docutils literal"><span class="pre">mx.nd</span></code> for short) name space:</p>
<div class="highlight-python"><div class="highlight"><pre><span></span><span class="n">z</span> <span class="o">=</span> <span class="n">mx</span><span class="o">.</span><span class="n">nd</span><span class="o">.</span><span class="n">add</span><span class="p">(</span><span class="n">x</span><span class="p">,</span> <span class="n">y</span><span class="p">)</span>
<span class="k">print</span><span class="p">(</span><span class="n">z</span><span class="p">)</span>
</pre></div>
</div>
<p>You can also pass additional flags to operators:</p>
<div class="highlight-python"><div class="highlight"><pre><span></span><span class="n">z</span> <span class="o">=</span> <span class="n">mx</span><span class="o">.</span><span class="n">nd</span><span class="o">.</span><span class="n">sum</span><span class="p">(</span><span class="n">x</span><span class="p">,</span> <span class="n">axis</span><span class="o">=</span><span class="mi">0</span><span class="p">)</span>
<span class="k">print</span><span class="p">(</span><span class="s1">'axis=0:'</span><span class="p">,</span> <span class="n">z</span><span class="p">)</span>
<span class="n">z</span> <span class="o">=</span> <span class="n">mx</span><span class="o">.</span><span class="n">nd</span><span class="o">.</span><span class="n">sum</span><span class="p">(</span><span class="n">x</span><span class="p">,</span> <span class="n">axis</span><span class="o">=</span><span class="mi">1</span><span class="p">)</span>
<span class="k">print</span><span class="p">(</span><span class="s1">'axis=1:'</span><span class="p">,</span> <span class="n">z</span><span class="p">)</span>
</pre></div>
</div>
</div>
<div class="section" id="using-gpu">
<span id="using-gpu"></span><h2>Using GPU<a class="headerlink" href="#using-gpu" title="Permalink to this headline">¶</a></h2>
<p>Each NDArray lives on a <code class="docutils literal"><span class="pre">Context</span></code>. MXNet supports <code class="docutils literal"><span class="pre">mx.cpu()</span></code> for CPU and <code class="docutils literal"><span class="pre">mx.gpu(0)</span></code>,
<code class="docutils literal"><span class="pre">mx.gpu(1)</span></code>, etc for GPU. You can specify context when creating NDArray:</p>
<div class="highlight-python"><div class="highlight"><pre><span></span><span class="c1"># creates on CPU (the default).</span>
<span class="c1"># Replace mx.cpu() with mx.gpu(0) if you have a GPU.</span>
<span class="n">x</span> <span class="o">=</span> <span class="n">mx</span><span class="o">.</span><span class="n">nd</span><span class="o">.</span><span class="n">zeros</span><span class="p">((</span><span class="mi">2</span><span class="p">,</span> <span class="mi">2</span><span class="p">),</span> <span class="n">ctx</span><span class="o">=</span><span class="n">mx</span><span class="o">.</span><span class="n">cpu</span><span class="p">())</span>
<span class="k">print</span><span class="p">(</span><span class="n">x</span><span class="p">)</span>
</pre></div>
</div>
<div class="highlight-python"><div class="highlight"><pre><span></span><span class="n">x</span> <span class="o">=</span> <span class="n">mx</span><span class="o">.</span><span class="n">nd</span><span class="o">.</span><span class="n">array</span><span class="p">([[</span><span class="mi">1</span><span class="p">,</span> <span class="mi">2</span><span class="p">],</span> <span class="p">[</span><span class="mi">3</span><span class="p">,</span> <span class="mi">4</span><span class="p">]],</span> <span class="n">ctx</span><span class="o">=</span><span class="n">mx</span><span class="o">.</span><span class="n">cpu</span><span class="p">())</span>
<span class="k">print</span><span class="p">(</span><span class="n">x</span><span class="p">)</span>
</pre></div>
</div>
<p>You can copy arrays between devices with <code class="docutils literal"><span class="pre">.copyto()</span></code>:</p>
<div class="highlight-python"><div class="highlight"><pre><span></span><span class="c1"># Copy x to cpu. Replace with mx.gpu(0) if you have GPU.</span>
<span class="n">y</span> <span class="o">=</span> <span class="n">x</span><span class="o">.</span><span class="n">copyto</span><span class="p">(</span><span class="n">mx</span><span class="o">.</span><span class="n">cpu</span><span class="p">())</span>
<span class="k">print</span><span class="p">(</span><span class="n">y</span><span class="p">)</span>
</pre></div>
</div>
<div class="highlight-python"><div class="highlight"><pre><span></span><span class="c1"># Copy x to another NDArray, possibly on another Context.</span>
<span class="n">y</span> <span class="o">=</span> <span class="n">mx</span><span class="o">.</span><span class="n">nd</span><span class="o">.</span><span class="n">zeros_like</span><span class="p">(</span><span class="n">x</span><span class="p">)</span>
<span class="n">x</span><span class="o">.</span><span class="n">copyto</span><span class="p">(</span><span class="n">y</span><span class="p">)</span>
<span class="k">print</span><span class="p">(</span><span class="n">y</span><span class="p">)</span>
</pre></div>
</div>
<p>See the <a class="reference internal" href="../basic/ndarray.html"><span class="doc">Advanced NDArray tutorial</span></a> for a more detailed
introduction to NDArray API.</p>
<div class="btn-group" role="group">
<div class="download-btn"><a download="ndarray.ipynb" href="ndarray.ipynb"><span class="glyphicon glyphicon-download-alt"></span> ndarray.ipynb</a></div></div></div>
</div>
</div>
</div>
<div aria-label="main navigation" class="sphinxsidebar rightsidebar" role="navigation">
<div class="sphinxsidebarwrapper">
<h3><a href="../../index.html">Table Of Contents</a></h3>
<ul>
<li><a class="reference internal" href="#">NDArray - Scientific computing on CPU and GPU</a><ul>
<li><a class="reference internal" href="#creating-ndarray">Creating NDArray</a></li>
<li><a class="reference internal" href="#basic-attributes">Basic attributes</a></li>
<li><a class="reference internal" href="#ndarray-operations">NDArray Operations</a></li>
<li><a class="reference internal" href="#using-gpu">Using GPU</a></li>
</ul>
</li>
</ul>
</div>
</div>
</div><div class="footer">
<div class="section-disclaimer">
<div class="container">
<div>
<img height="60" src="https://raw.githubusercontent.com/dmlc/web-data/master/mxnet/image/apache_incubator_logo.png"/>
<p>
Apache MXNet is an effort undergoing incubation at The Apache Software Foundation (ASF), <strong>sponsored by the <i>Apache Incubator</i></strong>. Incubation is required of all newly accepted projects until a further review indicates that the infrastructure, communications, and decision making process have stabilized in a manner consistent with other successful ASF projects. While incubation status is not necessarily a reflection of the completeness or stability of the code, it does indicate that the project has yet to be fully endorsed by the ASF.
</p>
<p>
"Copyright © 2017-2018, The Apache Software Foundation
Apache MXNet, MXNet, Apache, the Apache feather, and the Apache MXNet project logo are either registered trademarks or trademarks of the Apache Software Foundation."
</p>
</div>
</div>
</div>
</div> <!-- pagename != index -->
</div>
<script crossorigin="anonymous" integrity="sha384-0mSbJDEHialfmuBBQP6A4Qrprq5OVfW37PRR3j5ELqxss1yVqOtnepnHVP9aJ7xS" src="https://maxcdn.bootstrapcdn.com/bootstrap/3.3.6/js/bootstrap.min.js"></script>
<script src="../../_static/js/sidebar.js" type="text/javascript"></script>
<script src="../../_static/js/search.js" type="text/javascript"></script>
<script src="../../_static/js/navbar.js" type="text/javascript"></script>
<script src="../../_static/js/clipboard.min.js" type="text/javascript"></script>
<script src="../../_static/js/copycode.js" type="text/javascript"></script>
<script src="../../_static/js/page.js" type="text/javascript"></script>
<script src="../../_static/js/docversion.js" type="text/javascript"></script>
<script type="text/javascript">
$('body').ready(function () {
$('body').css('visibility', 'visible');
});
</script>
</body>
</html>