versions/0.11.0/tutorials/r/CallbackFunctionTutorial.html (450 lines of code) (raw):

<!DOCTYPE html> <html lang="en"> <head> <meta charset="utf-8"/> <meta content="IE=edge" http-equiv="X-UA-Compatible"/> <meta content="width=device-width, initial-scale=1" name="viewport"/> <meta content="Callback Function" property="og:title"> <meta content="https://raw.githubusercontent.com/dmlc/web-data/master/mxnet/image/og-logo.png" property="og:image"> <meta content="https://raw.githubusercontent.com/dmlc/web-data/master/mxnet/image/og-logo.png" property="og:image:secure_url"> <meta content="Callback Function" property="og:description"/> <title>Callback Function — mxnet documentation</title> <link crossorigin="anonymous" href="https://maxcdn.bootstrapcdn.com/bootstrap/3.3.6/css/bootstrap.min.css" integrity="sha384-1q8mTJOASx8j1Au+a5WDVnPi2lkFfwwEAa8hDDdjZlpLegxhjVME1fgjWPGmkzs7" rel="stylesheet"/> <link href="https://maxcdn.bootstrapcdn.com/font-awesome/4.5.0/css/font-awesome.min.css" rel="stylesheet"/> <link href="../../_static/basic.css" rel="stylesheet" type="text/css"> <link href="../../_static/pygments.css" rel="stylesheet" type="text/css"> <link href="../../_static/mxnet.css" rel="stylesheet" type="text/css"/> <script type="text/javascript"> var DOCUMENTATION_OPTIONS = { URL_ROOT: '../../', VERSION: '', COLLAPSE_INDEX: false, FILE_SUFFIX: '.html', HAS_SOURCE: true, SOURCELINK_SUFFIX: '.txt' }; </script> <script src="https://code.jquery.com/jquery-1.11.1.min.js" type="text/javascript"></script> <script src="../../_static/underscore.js" type="text/javascript"></script> <script src="../../_static/searchtools_custom.js" type="text/javascript"></script> <script src="../../_static/doctools.js" type="text/javascript"></script> <script src="../../_static/selectlang.js" type="text/javascript"></script> <script src="https://cdnjs.cloudflare.com/ajax/libs/mathjax/2.7.1/MathJax.js?config=TeX-AMS-MML_HTMLorMML" type="text/javascript"></script> <script type="text/javascript"> jQuery(function() { Search.loadIndex("/versions/0.11.0/searchindex.js"); Search.init();}); </script> <!-- --> <!-- <script type="text/javascript" src="../../_static/jquery.js"></script> --> <!-- --> <!-- <script type="text/javascript" src="../../_static/underscore.js"></script> --> <!-- --> <!-- <script type="text/javascript" src="../../_static/doctools.js"></script> --> <!-- --> <!-- <script type="text/javascript" src="https://cdnjs.cloudflare.com/ajax/libs/mathjax/2.7.0/MathJax.js?config=TeX-AMS-MML_HTMLorMML"></script> --> <!-- --> <link href="../../genindex.html" rel="index" title="Index"> <link href="../../search.html" rel="search" title="Search"/> <link href="https://raw.githubusercontent.com/dmlc/web-data/master/mxnet/image/mxnet-icon.png" rel="icon" type="image/png"/> </link></link></link></meta></meta></meta></head> <body background="https://raw.githubusercontent.com/dmlc/web-data/master/mxnet/image/mxnet-background-compressed.jpeg" role="document"> <div class="content-block"><div class="navbar navbar-fixed-top"> <div class="container" id="navContainer"> <div class="innder" id="header-inner"> <h1 id="logo-wrap"> <a href="../../" id="logo"><img src="https://raw.githubusercontent.com/dmlc/web-data/master/mxnet/image/mxnet_logo.png"/></a> </h1> <nav class="nav-bar" id="main-nav"> <a class="main-nav-link" href="/versions/0.11.0/get_started/install.html">Install</a> <span id="dropdown-menu-position-anchor"> <a aria-expanded="true" aria-haspopup="true" class="main-nav-link dropdown-toggle" data-toggle="dropdown" href="#" role="button">Gluon <span class="caret"></span></a> <ul class="dropdown-menu navbar-menu" id="package-dropdown-menu"> <li><a class="main-nav-link" href="/versions/0.11.0/tutorials/gluon/gluon.html">About</a></li> <li><a class="main-nav-link" href="https://www.d2l.ai/">Dive into Deep Learning</a></li> <li><a class="main-nav-link" href="https://gluon-cv.mxnet.io">GluonCV Toolkit</a></li> <li><a class="main-nav-link" href="https://gluon-nlp.mxnet.io/">GluonNLP Toolkit</a></li> </ul> </span> <span id="dropdown-menu-position-anchor"> <a aria-expanded="true" aria-haspopup="true" class="main-nav-link dropdown-toggle" data-toggle="dropdown" href="#" role="button">API <span class="caret"></span></a> <ul class="dropdown-menu navbar-menu" id="package-dropdown-menu"> <li><a class="main-nav-link" href="/versions/0.11.0/api/python/index.html">Python</a></li> <li><a class="main-nav-link" href="/versions/0.11.0/api/c++/index.html">C++</a></li> <li><a class="main-nav-link" href="/versions/0.11.0/api/julia/index.html">Julia</a></li> <li><a class="main-nav-link" href="/versions/0.11.0/api/perl/index.html">Perl</a></li> <li><a class="main-nav-link" href="/versions/0.11.0/api/r/index.html">R</a></li> <li><a class="main-nav-link" href="/versions/0.11.0/api/scala/index.html">Scala</a></li> </ul> </span> <span id="dropdown-menu-position-anchor-docs"> <a aria-expanded="true" aria-haspopup="true" class="main-nav-link dropdown-toggle" data-toggle="dropdown" href="#" role="button">Docs <span class="caret"></span></a> <ul class="dropdown-menu navbar-menu" id="package-dropdown-menu-docs"> <li><a class="main-nav-link" href="/versions/0.11.0/how_to/faq.html">FAQ</a></li> <li><a class="main-nav-link" href="/versions/0.11.0/tutorials/index.html">Tutorials</a> <li><a class="main-nav-link" href="https://github.com/apache/incubator-mxnet/tree/v0.11.0/example">Examples</a></li> <li><a class="main-nav-link" href="/versions/0.11.0/architecture/index.html">Architecture</a></li> <li><a class="main-nav-link" href="https://cwiki.apache.org/confluence/display/MXNET/Apache+MXNet+Home">Developer Wiki</a></li> <li><a class="main-nav-link" href="/versions/0.11.0/model_zoo/index.html">Model Zoo</a></li> <li><a class="main-nav-link" href="https://github.com/onnx/onnx-mxnet">ONNX</a></li> </li></ul> </span> <span id="dropdown-menu-position-anchor-community"> <a aria-expanded="true" aria-haspopup="true" class="main-nav-link dropdown-toggle" data-toggle="dropdown" href="#" role="button">Community <span class="caret"></span></a> <ul class="dropdown-menu navbar-menu" id="package-dropdown-menu-community"> <li><a class="main-nav-link" href="http://discuss.mxnet.io">Forum</a></li> <li><a class="main-nav-link" href="https://github.com/apache/incubator-mxnet/tree/v0.11.0">Github</a></li> <li><a class="main-nav-link" href="/versions/0.11.0/community/contribute.html">Contribute</a></li> </ul> </span> <span id="dropdown-menu-position-anchor-version" style="position: relative"><a href="#" class="main-nav-link dropdown-toggle" data-toggle="dropdown" role="button" aria-haspopup="true" aria-expanded="true">0.11.0<span class="caret"></span></a><ul id="package-dropdown-menu" class="dropdown-menu"><li><a href="/">master</a></li><li><a href="/versions/1.7.0/">1.7.0</a></li><li><a href=/versions/1.6.0/>1.6.0</a></li><li><a href=/versions/1.5.0/>1.5.0</a></li><li><a href=/versions/1.4.1/>1.4.1</a></li><li><a href=/versions/1.3.1/>1.3.1</a></li><li><a href=/versions/1.2.1/>1.2.1</a></li><li><a href=/versions/1.1.0/>1.1.0</a></li><li><a href=/versions/1.0.0/>1.0.0</a></li><li><a href=/versions/0.12.1/>0.12.1</a></li><li><a href=/versions/0.11.0/>0.11.0</a></li></ul></span></nav> <script> function getRootPath(){ return "../../" } </script> <div class="burgerIcon dropdown"> <a class="dropdown-toggle" data-toggle="dropdown" href="#" role="button">☰</a> <ul class="dropdown-menu" id="burgerMenu"> <li><a href="/versions/0.11.0/get_started/install.html">Install</a></li> <li><a class="main-nav-link" href="/versions/0.11.0/tutorials/index.html">Tutorials</a></li> <li class="dropdown-submenu dropdown"> <a aria-expanded="true" aria-haspopup="true" class="dropdown-toggle burger-link" data-toggle="dropdown" href="#" tabindex="-1">Gluon</a> <ul class="dropdown-menu navbar-menu" id="package-dropdown-menu"> <li><a class="main-nav-link" href="/versions/0.11.0/tutorials/gluon/gluon.html">About</a></li> <li><a class="main-nav-link" href="http://gluon.mxnet.io">The Straight Dope (Tutorials)</a></li> <li><a class="main-nav-link" href="https://gluon-cv.mxnet.io">GluonCV Toolkit</a></li> <li><a class="main-nav-link" href="https://gluon-nlp.mxnet.io/">GluonNLP Toolkit</a></li> </ul> </li> <li class="dropdown-submenu"> <a aria-expanded="true" aria-haspopup="true" class="dropdown-toggle burger-link" data-toggle="dropdown" href="#" tabindex="-1">API</a> <ul class="dropdown-menu"> <li><a class="main-nav-link" href="/versions/0.11.0/api/python/index.html">Python</a></li> <li><a class="main-nav-link" href="/versions/0.11.0/api/c++/index.html">C++</a></li> <li><a class="main-nav-link" href="/versions/0.11.0/api/julia/index.html">Julia</a></li> <li><a class="main-nav-link" href="/versions/0.11.0/api/perl/index.html">Perl</a></li> <li><a class="main-nav-link" href="/versions/0.11.0/api/r/index.html">R</a></li> <li><a class="main-nav-link" href="/versions/0.11.0/api/scala/index.html">Scala</a></li> </ul> </li> <li class="dropdown-submenu"> <a aria-expanded="true" aria-haspopup="true" class="dropdown-toggle burger-link" data-toggle="dropdown" href="#" tabindex="-1">Docs</a> <ul class="dropdown-menu"> <li><a href="/versions/0.11.0/how_to/faq.html" tabindex="-1">FAQ</a></li> <li><a href="/versions/0.11.0/tutorials/index.html" tabindex="-1">Tutorials</a></li> <li><a href="https://github.com/apache/incubator-mxnet/tree/v0.11.0/example" tabindex="-1">Examples</a></li> <li><a href="/versions/0.11.0/architecture/index.html" tabindex="-1">Architecture</a></li> <li><a href="https://cwiki.apache.org/confluence/display/MXNET/Apache+MXNet+Home" tabindex="-1">Developer Wiki</a></li> <li><a href="/versions/0.11.0/model_zoo/index.html" tabindex="-1">Gluon Model Zoo</a></li> <li><a href="https://github.com/onnx/onnx-mxnet" tabindex="-1">ONNX</a></li> </ul> </li> <li class="dropdown-submenu dropdown"> <a aria-haspopup="true" class="dropdown-toggle burger-link" data-toggle="dropdown" href="#" role="button" tabindex="-1">Community</a> <ul class="dropdown-menu"> <li><a href="http://discuss.mxnet.io" tabindex="-1">Forum</a></li> <li><a href="https://github.com/apache/incubator-mxnet/tree/v0.11.0" tabindex="-1">Github</a></li> <li><a href="/versions/0.11.0/community/contribute.html" tabindex="-1">Contribute</a></li> </ul> </li> <li id="dropdown-menu-position-anchor-version-mobile" class="dropdown-submenu" style="position: relative"><a href="#" tabindex="-1">0.11.0</a><ul class="dropdown-menu"><li><a tabindex="-1" href=/>master</a></li><li><a tabindex="-1" href=/versions/1.6.0/>1.6.0</a></li><li><a tabindex="-1" href=/versions/1.5.0/>1.5.0</a></li><li><a tabindex="-1" href=/versions/1.4.1/>1.4.1</a></li><li><a tabindex="-1" href=/versions/1.3.1/>1.3.1</a></li><li><a tabindex="-1" href=/versions/1.2.1/>1.2.1</a></li><li><a tabindex="-1" href=/versions/1.1.0/>1.1.0</a></li><li><a tabindex="-1" href=/versions/1.0.0/>1.0.0</a></li><li><a tabindex="-1" href=/versions/0.12.1/>0.12.1</a></li><li><a tabindex="-1" href=/versions/0.11.0/>0.11.0</a></li></ul></li></ul> </div> <div class="plusIcon dropdown"> <a class="dropdown-toggle" data-toggle="dropdown" href="#" role="button"><span aria-hidden="true" class="glyphicon glyphicon-plus"></span></a> <ul class="dropdown-menu dropdown-menu-right" id="plusMenu"></ul> </div> <div id="search-input-wrap"> <form action="../../search.html" autocomplete="off" class="" method="get" role="search"> <div class="form-group inner-addon left-addon"> <i class="glyphicon glyphicon-search"></i> <input class="form-control" name="q" placeholder="Search" type="text"/> </div> <input name="check_keywords" type="hidden" value="yes"> <input name="area" type="hidden" value="default"/> </input></form> <div id="search-preview"></div> </div> <div id="searchIcon"> <span aria-hidden="true" class="glyphicon glyphicon-search"></span> </div> <!-- <div id="lang-select-wrap"> --> <!-- <label id="lang-select-label"> --> <!-- <\!-- <i class="fa fa-globe"></i> -\-> --> <!-- <span></span> --> <!-- </label> --> <!-- <select id="lang-select"> --> <!-- <option value="en">Eng</option> --> <!-- <option value="zh">中文</option> --> <!-- </select> --> <!-- </div> --> <!-- <a id="mobile-nav-toggle"> <span class="mobile-nav-toggle-bar"></span> <span class="mobile-nav-toggle-bar"></span> <span class="mobile-nav-toggle-bar"></span> </a> --> </div> </div> </div> <script type="text/javascript"> $('body').css('background', 'white'); </script> <div class="container"> <div class="row"> <div aria-label="main navigation" class="sphinxsidebar leftsidebar" role="navigation"> <div class="sphinxsidebarwrapper"> <ul> <li class="toctree-l1"><a class="reference internal" href="../../api/python/index.html">Python Documents</a></li> <li class="toctree-l1"><a class="reference internal" href="../../api/r/index.html">R Documents</a></li> <li class="toctree-l1"><a class="reference internal" href="../../api/julia/index.html">Julia Documents</a></li> <li class="toctree-l1"><a class="reference internal" href="../../api/c++/index.html">C++ Documents</a></li> <li class="toctree-l1"><a class="reference internal" href="../../api/scala/index.html">Scala Documents</a></li> <li class="toctree-l1"><a class="reference internal" href="../../api/perl/index.html">Perl Documents</a></li> <li class="toctree-l1"><a class="reference internal" href="../../how_to/index.html">HowTo Documents</a></li> <li class="toctree-l1"><a class="reference internal" href="../../architecture/index.html">System Documents</a></li> <li class="toctree-l1"><a class="reference internal" href="../index.html">Tutorials</a></li> </ul> </div> </div> <div class="content"> <div class="page-tracker"></div> <div class="section" id="callback-function"> <span id="callback-function"></span><h1>Callback Function<a class="headerlink" href="#callback-function" title="Permalink to this headline">¶</a></h1> <p>This tutorial provides guidelines for using and writing callback functions, which can very useful in model training.</p> <div class="section" id="model-training-example"> <span id="model-training-example"></span><h2>Model Training Example<a class="headerlink" href="#model-training-example" title="Permalink to this headline">¶</a></h2> <p>Let’s begin with a small example. We can build and train a model with the following code:</p> <div class="highlight-r"><div class="highlight"><pre><span></span> <span class="nf">library</span><span class="p">(</span><span class="n">mxnet</span><span class="p">)</span> <span class="nf">data</span><span class="p">(</span><span class="n">BostonHousing</span><span class="p">,</span> <span class="n">package</span><span class="o">=</span><span class="s">"mlbench"</span><span class="p">)</span> <span class="n">train.ind</span> <span class="o">=</span> <span class="nf">seq</span><span class="p">(</span><span class="m">1</span><span class="p">,</span> <span class="m">506</span><span class="p">,</span> <span class="m">3</span><span class="p">)</span> <span class="n">train.x</span> <span class="o">=</span> <span class="nf">data.matrix</span><span class="p">(</span><span class="n">BostonHousing[train.ind</span><span class="p">,</span> <span class="m">-14</span><span class="n">]</span><span class="p">)</span> <span class="n">train.y</span> <span class="o">=</span> <span class="n">BostonHousing[train.ind</span><span class="p">,</span> <span class="m">14</span><span class="n">]</span> <span class="n">test.x</span> <span class="o">=</span> <span class="nf">data.matrix</span><span class="p">(</span><span class="n">BostonHousing[</span><span class="o">-</span><span class="n">train.ind</span><span class="p">,</span> <span class="m">-14</span><span class="n">]</span><span class="p">)</span> <span class="n">test.y</span> <span class="o">=</span> <span class="n">BostonHousing[</span><span class="o">-</span><span class="n">train.ind</span><span class="p">,</span> <span class="m">14</span><span class="n">]</span> <span class="n">data</span> <span class="o"><-</span> <span class="nf">mx.symbol.Variable</span><span class="p">(</span><span class="s">"data"</span><span class="p">)</span> <span class="n">fc1</span> <span class="o"><-</span> <span class="nf">mx.symbol.FullyConnected</span><span class="p">(</span><span class="n">data</span><span class="p">,</span> <span class="n">num_hidden</span><span class="o">=</span><span class="m">1</span><span class="p">)</span> <span class="n">lro</span> <span class="o"><-</span> <span class="nf">mx.symbol.LinearRegressionOutput</span><span class="p">(</span><span class="n">fc1</span><span class="p">)</span> <span class="nf">mx.set.seed</span><span class="p">(</span><span class="m">0</span><span class="p">)</span> <span class="n">model</span> <span class="o"><-</span> <span class="nf">mx.model.FeedForward.create</span><span class="p">(</span> <span class="n">lro</span><span class="p">,</span> <span class="n">X</span><span class="o">=</span><span class="n">train.x</span><span class="p">,</span> <span class="n">y</span><span class="o">=</span><span class="n">train.y</span><span class="p">,</span> <span class="n">eval.data</span><span class="o">=</span><span class="nf">list</span><span class="p">(</span><span class="n">data</span><span class="o">=</span><span class="n">test.x</span><span class="p">,</span> <span class="n">label</span><span class="o">=</span><span class="n">test.y</span><span class="p">),</span> <span class="n">ctx</span><span class="o">=</span><span class="nf">mx.cpu</span><span class="p">(),</span> <span class="n">num.round</span><span class="o">=</span><span class="m">10</span><span class="p">,</span> <span class="n">array.batch.size</span><span class="o">=</span><span class="m">20</span><span class="p">,</span> <span class="n">learning.rate</span><span class="o">=</span><span class="m">2e-6</span><span class="p">,</span> <span class="n">momentum</span><span class="o">=</span><span class="m">0.9</span><span class="p">,</span> <span class="n">eval.metric</span><span class="o">=</span><span class="n">mx.metric.rmse</span><span class="p">)</span> </pre></div> </div> <div class="highlight-default"><div class="highlight"><pre><span></span> <span class="c1">## Auto detect layout of input matrix, use row major..</span> <span class="c1">## Start training with 1 devices</span> <span class="c1">## [1] Train-rmse=16.063282524034</span> <span class="c1">## [1] Validation-rmse=10.1766446093622</span> <span class="c1">## [2] Train-rmse=12.2792375712573</span> <span class="c1">## [2] Validation-rmse=12.4331776190813</span> <span class="c1">## [3] Train-rmse=11.1984634005885</span> <span class="c1">## [3] Validation-rmse=10.3303041888193</span> <span class="c1">## [4] Train-rmse=10.2645236892904</span> <span class="c1">## [4] Validation-rmse=8.42760407903415</span> <span class="c1">## [5] Train-rmse=9.49711005504284</span> <span class="c1">## [5] Validation-rmse=8.44557808483234</span> <span class="c1">## [6] Train-rmse=9.07733734175182</span> <span class="c1">## [6] Validation-rmse=8.33225500266177</span> <span class="c1">## [7] Train-rmse=9.07884450847991</span> <span class="c1">## [7] Validation-rmse=8.38827833418459</span> <span class="c1">## [8] Train-rmse=9.10463850277417</span> <span class="c1">## [8] Validation-rmse=8.37394452365264</span> <span class="c1">## [9] Train-rmse=9.03977049028532</span> <span class="c1">## [9] Validation-rmse=8.25927979725672</span> <span class="c1">## [10] Train-rmse=8.96870685004475</span> <span class="c1">## [10] Validation-rmse=8.19509291481822</span> </pre></div> </div> <p>We also provide two optional parameters, <code class="docutils literal"><span class="pre">batch.end.callback</span></code> and <code class="docutils literal"><span class="pre">epoch.end.callback</span></code>, which can provide great flexibility in model training.</p> </div> <div class="section" id="how-to-use-callback-functions"> <span id="how-to-use-callback-functions"></span><h2>How to Use Callback Functions<a class="headerlink" href="#how-to-use-callback-functions" title="Permalink to this headline">¶</a></h2> <p>This package provides two callback functions:</p> <ul class="simple"> <li><code class="docutils literal"><span class="pre">mx.callback.save.checkpoint</span></code> saves a checkpoint to files during each period iteration.</li> </ul> <div class="highlight-r"><div class="highlight"><pre><span></span> <span class="n">model</span> <span class="o"><-</span> <span class="nf">mx.model.FeedForward.create</span><span class="p">(</span> <span class="n">lro</span><span class="p">,</span> <span class="n">X</span><span class="o">=</span><span class="n">train.x</span><span class="p">,</span> <span class="n">y</span><span class="o">=</span><span class="n">train.y</span><span class="p">,</span> <span class="n">eval.data</span><span class="o">=</span><span class="nf">list</span><span class="p">(</span><span class="n">data</span><span class="o">=</span><span class="n">test.x</span><span class="p">,</span> <span class="n">label</span><span class="o">=</span><span class="n">test.y</span><span class="p">),</span> <span class="n">ctx</span><span class="o">=</span><span class="nf">mx.cpu</span><span class="p">(),</span> <span class="n">num.round</span><span class="o">=</span><span class="m">10</span><span class="p">,</span> <span class="n">array.batch.size</span><span class="o">=</span><span class="m">20</span><span class="p">,</span> <span class="n">learning.rate</span><span class="o">=</span><span class="m">2e-6</span><span class="p">,</span> <span class="n">momentum</span><span class="o">=</span><span class="m">0.9</span><span class="p">,</span> <span class="n">eval.metric</span><span class="o">=</span><span class="n">mx.metric.rmse</span><span class="p">,</span> <span class="n">epoch.end.callback</span> <span class="o">=</span> <span class="nf">mx.callback.save.checkpoint</span><span class="p">(</span><span class="s">"boston"</span><span class="p">))</span> </pre></div> </div> <div class="highlight-default"><div class="highlight"><pre><span></span> <span class="c1">## Auto detect layout of input matrix, use row major..</span> <span class="c1">## Start training with 1 devices</span> <span class="c1">## [1] Train-rmse=19.1621424021617</span> <span class="c1">## [1] Validation-rmse=20.721515592165</span> <span class="c1">## Model checkpoint saved to boston-0001.params</span> <span class="c1">## [2] Train-rmse=13.5127391952367</span> <span class="c1">## [2] Validation-rmse=14.1822123675007</span> <span class="c1">## Model checkpoint saved to boston-0002.params</span> </pre></div> </div> <ul class="simple"> <li><code class="docutils literal"><span class="pre">mx.callback.log.train.metric</span></code> logs a training metric each period. You can use it either as a <code class="docutils literal"><span class="pre">batch.end.callback</span></code> or an <code class="docutils literal"><span class="pre">epoch.end.callback</span></code>.</li> </ul> <div class="highlight-r"><div class="highlight"><pre><span></span> <span class="n">model</span> <span class="o"><-</span> <span class="nf">mx.model.FeedForward.create</span><span class="p">(</span> <span class="n">lro</span><span class="p">,</span> <span class="n">X</span><span class="o">=</span><span class="n">train.x</span><span class="p">,</span> <span class="n">y</span><span class="o">=</span><span class="n">train.y</span><span class="p">,</span> <span class="n">eval.data</span><span class="o">=</span><span class="nf">list</span><span class="p">(</span><span class="n">data</span><span class="o">=</span><span class="n">test.x</span><span class="p">,</span> <span class="n">label</span><span class="o">=</span><span class="n">test.y</span><span class="p">),</span> <span class="n">ctx</span><span class="o">=</span><span class="nf">mx.cpu</span><span class="p">(),</span> <span class="n">num.round</span><span class="o">=</span><span class="m">10</span><span class="p">,</span> <span class="n">array.batch.size</span><span class="o">=</span><span class="m">20</span><span class="p">,</span> <span class="n">learning.rate</span><span class="o">=</span><span class="m">2e-6</span><span class="p">,</span> <span class="n">momentum</span><span class="o">=</span><span class="m">0.9</span><span class="p">,</span> <span class="n">eval.metric</span><span class="o">=</span><span class="n">mx.metric.rmse</span><span class="p">,</span> <span class="n">batch.end.callback</span> <span class="o">=</span> <span class="nf">mx.callback.log.train.metric</span><span class="p">(</span><span class="m">5</span><span class="p">))</span> </pre></div> </div> <div class="highlight-default"><div class="highlight"><pre><span></span> <span class="c1">## Auto detect layout of input matrix, use row major..</span> <span class="c1">## Start training with 1 devices</span> <span class="c1">## Batch [5] Train-rmse=17.6514558545416</span> <span class="c1">## [1] Train-rmse=15.2879610219001</span> <span class="c1">## [1] Validation-rmse=12.3332062820921</span> <span class="c1">## Batch [5] Train-rmse=11.939392828565</span> <span class="c1">## [2] Train-rmse=11.4382242547217</span> <span class="c1">## [2] Validation-rmse=9.91176550103181</span> <span class="o">............</span> </pre></div> </div> <p>You also can save the training and evaluation errors for later use by passing a reference class:</p> <div class="highlight-r"><div class="highlight"><pre><span></span> <span class="n">logger</span> <span class="o"><-</span> <span class="n">mx.metric.logger</span><span class="o">$</span><span class="nf">new</span><span class="p">()</span> <span class="n">model</span> <span class="o"><-</span> <span class="nf">mx.model.FeedForward.create</span><span class="p">(</span> <span class="n">lro</span><span class="p">,</span> <span class="n">X</span><span class="o">=</span><span class="n">train.x</span><span class="p">,</span> <span class="n">y</span><span class="o">=</span><span class="n">train.y</span><span class="p">,</span> <span class="n">eval.data</span><span class="o">=</span><span class="nf">list</span><span class="p">(</span><span class="n">data</span><span class="o">=</span><span class="n">test.x</span><span class="p">,</span> <span class="n">label</span><span class="o">=</span><span class="n">test.y</span><span class="p">),</span> <span class="n">ctx</span><span class="o">=</span><span class="nf">mx.cpu</span><span class="p">(),</span> <span class="n">num.round</span><span class="o">=</span><span class="m">10</span><span class="p">,</span> <span class="n">array.batch.size</span><span class="o">=</span><span class="m">20</span><span class="p">,</span> <span class="n">learning.rate</span><span class="o">=</span><span class="m">2e-6</span><span class="p">,</span> <span class="n">momentum</span><span class="o">=</span><span class="m">0.9</span><span class="p">,</span> <span class="n">eval.metric</span><span class="o">=</span><span class="n">mx.metric.rmse</span><span class="p">,</span> <span class="n">epoch.end.callback</span> <span class="o">=</span> <span class="nf">mx.callback.log.train.metric</span><span class="p">(</span><span class="m">5</span><span class="p">,</span> <span class="n">logger</span><span class="p">))</span> </pre></div> </div> <div class="highlight-default"><div class="highlight"><pre><span></span> <span class="c1">## Auto detect layout of input matrix, use row major..</span> <span class="c1">## Start training with 1 devices</span> <span class="c1">## [1] Train-rmse=19.1083228733256</span> <span class="c1">## [1] Validation-rmse=12.7150687428974</span> <span class="c1">## [2] Train-rmse=15.7684378116157</span> <span class="c1">## [2] Validation-rmse=14.8105319420491</span> <span class="o">............</span> </pre></div> </div> <div class="highlight-r"><div class="highlight"><pre><span></span> <span class="nf">head</span><span class="p">(</span><span class="n">logger</span><span class="o">$</span><span class="n">train</span><span class="p">)</span> </pre></div> </div> <div class="highlight-default"><div class="highlight"><pre><span></span> <span class="c1">## [1] 19.108323 15.768438 13.531470 11.386050 9.555477 9.351324</span> </pre></div> </div> <div class="highlight-r"><div class="highlight"><pre><span></span> <span class="nf">head</span><span class="p">(</span><span class="n">logger</span><span class="o">$</span><span class="n">eval</span><span class="p">)</span> </pre></div> </div> <div class="highlight-default"><div class="highlight"><pre><span></span> <span class="c1">## [1] 12.715069 14.810532 15.840361 10.898733 9.349706 9.363087</span> </pre></div> </div> </div> <div class="section" id="how-to-write-your-own-callback-functions"> <span id="how-to-write-your-own-callback-functions"></span><h2>How to Write Your Own Callback Functions<a class="headerlink" href="#how-to-write-your-own-callback-functions" title="Permalink to this headline">¶</a></h2> <p>You can find the source code for the two callback functions on <a class="reference external" href="https://github.com/dmlc/mxnet/blob/master/R-package/R/callback.R">GitHub</a> and use it as a template:</p> <p>Basically, all callback functions follow the following structure:</p> <div class="highlight-r"><div class="highlight"><pre><span></span> <span class="n">mx.callback.fun</span> <span class="o"><-</span> <span class="nf">function</span><span class="p">()</span> <span class="p">{</span> <span class="nf">function</span><span class="p">(</span><span class="n">iteration</span><span class="p">,</span> <span class="n">nbatch</span><span class="p">,</span> <span class="n">env</span><span class="p">)</span> <span class="p">{</span> <span class="p">}</span> <span class="p">}</span> </pre></div> </div> <p>The following <code class="docutils literal"><span class="pre">mx.callback.save.checkpoint</span></code> function is stateless. It gets the model from the environment and saves it:.</p> <div class="highlight-r"><div class="highlight"><pre><span></span> <span class="n">mx.callback.save.checkpoint</span> <span class="o"><-</span> <span class="nf">function</span><span class="p">(</span><span class="n">prefix</span><span class="p">,</span> <span class="n">period</span><span class="o">=</span><span class="m">1</span><span class="p">)</span> <span class="p">{</span> <span class="nf">function</span><span class="p">(</span><span class="n">iteration</span><span class="p">,</span> <span class="n">nbatch</span><span class="p">,</span> <span class="n">env</span><span class="p">)</span> <span class="p">{</span> <span class="nf">if </span><span class="p">(</span><span class="n">iteration</span> <span class="o">%%</span> <span class="n">period</span> <span class="o">==</span> <span class="m">0</span><span class="p">)</span> <span class="p">{</span> <span class="nf">mx.model.save</span><span class="p">(</span><span class="n">env</span><span class="o">$</span><span class="n">model</span><span class="p">,</span> <span class="n">prefix</span><span class="p">,</span> <span class="n">iteration</span><span class="p">)</span> <span class="nf">cat</span><span class="p">(</span><span class="nf">sprintf</span><span class="p">(</span><span class="s">"Model checkpoint saved to %s-%04d.params\n"</span><span class="p">,</span> <span class="n">prefix</span><span class="p">,</span> <span class="n">iteration</span><span class="p">))</span> <span class="p">}</span> <span class="nf">return</span><span class="p">(</span><span class="kc">TRUE</span><span class="p">)</span> <span class="p">}</span> <span class="p">}</span> </pre></div> </div> <p>The <code class="docutils literal"><span class="pre">mx.callback.log.train.metric</span></code> is a little more complex. It holds a reference class and updates it during the training process:</p> <div class="highlight-r"><div class="highlight"><pre><span></span> <span class="n">mx.callback.log.train.metric</span> <span class="o"><-</span> <span class="nf">function</span><span class="p">(</span><span class="n">period</span><span class="p">,</span> <span class="n">logger</span><span class="o">=</span><span class="kc">NULL</span><span class="p">)</span> <span class="p">{</span> <span class="nf">function</span><span class="p">(</span><span class="n">iteration</span><span class="p">,</span> <span class="n">nbatch</span><span class="p">,</span> <span class="n">env</span><span class="p">)</span> <span class="p">{</span> <span class="nf">if </span><span class="p">(</span><span class="n">nbatch</span> <span class="o">%%</span> <span class="n">period</span> <span class="o">==</span> <span class="m">0</span> <span class="o">&amp;&amp;</span> <span class="o">!</span><span class="nf">is.null</span><span class="p">(</span><span class="n">env</span><span class="o">$</span><span class="n">metric</span><span class="p">))</span> <span class="p">{</span> <span class="n">result</span> <span class="o"><-</span> <span class="n">env</span><span class="o">$</span><span class="n">metric</span><span class="o">$</span><span class="nf">get</span><span class="p">(</span><span class="n">env</span><span class="o">$</span><span class="n">train.metric</span><span class="p">)</span> <span class="nf">if </span><span class="p">(</span><span class="n">nbatch</span> <span class="o">!=</span> <span class="m">0</span><span class="p">)</span> <span class="nf">cat</span><span class="p">(</span><span class="nf">paste0</span><span class="p">(</span><span class="s">"Batch ["</span><span class="p">,</span> <span class="n">nbatch</span><span class="p">,</span> <span class="s">"] Train-"</span><span class="p">,</span> <span class="n">result</span><span class="o">$</span><span class="n">name</span><span class="p">,</span> <span class="s">"="</span><span class="p">,</span> <span class="n">result</span><span class="o">$</span><span class="n">value</span><span class="p">,</span> <span class="s">"\n"</span><span class="p">))</span> <span class="nf">if </span><span class="p">(</span><span class="o">!</span><span class="nf">is.null</span><span class="p">(</span><span class="n">logger</span><span class="p">))</span> <span class="p">{</span> <span class="nf">if </span><span class="p">(</span><span class="nf">class</span><span class="p">(</span><span class="n">logger</span><span class="p">)</span> <span class="o">!=</span> <span class="s">"mx.metric.logger"</span><span class="p">)</span> <span class="p">{</span> <span class="nf">stop</span><span class="p">(</span><span class="s">"Invalid mx.metric.logger."</span><span class="p">)</span> <span class="p">}</span> <span class="n">logger</span><span class="o">$</span><span class="n">train</span> <span class="o"><-</span> <span class="nf">c</span><span class="p">(</span><span class="n">logger</span><span class="o">$</span><span class="n">train</span><span class="p">,</span> <span class="n">result</span><span class="o">$</span><span class="n">value</span><span class="p">)</span> <span class="nf">if </span><span class="p">(</span><span class="o">!</span><span class="nf">is.null</span><span class="p">(</span><span class="n">env</span><span class="o">$</span><span class="n">eval.metric</span><span class="p">))</span> <span class="p">{</span> <span class="n">result</span> <span class="o"><-</span> <span class="n">env</span><span class="o">$</span><span class="n">metric</span><span class="o">$</span><span class="nf">get</span><span class="p">(</span><span class="n">env</span><span class="o">$</span><span class="n">eval.metric</span><span class="p">)</span> <span class="nf">if </span><span class="p">(</span><span class="n">nbatch</span> <span class="o">!=</span> <span class="m">0</span><span class="p">)</span> <span class="nf">cat</span><span class="p">(</span><span class="nf">paste0</span><span class="p">(</span><span class="s">"Batch ["</span><span class="p">,</span> <span class="n">nbatch</span><span class="p">,</span> <span class="s">"] Validation-"</span><span class="p">,</span> <span class="n">result</span><span class="o">$</span><span class="n">name</span><span class="p">,</span> <span class="s">"="</span><span class="p">,</span> <span class="n">result</span><span class="o">$</span><span class="n">value</span><span class="p">,</span> <span class="s">"\n"</span><span class="p">))</span> <span class="n">logger</span><span class="o">$</span><span class="n">eval</span> <span class="o"><-</span> <span class="nf">c</span><span class="p">(</span><span class="n">logger</span><span class="o">$</span><span class="n">eval</span><span class="p">,</span> <span class="n">result</span><span class="o">$</span><span class="n">value</span><span class="p">)</span> <span class="p">}</span> <span class="p">}</span> <span class="p">}</span> <span class="nf">return</span><span class="p">(</span><span class="kc">TRUE</span><span class="p">)</span> <span class="p">}</span> <span class="p">}</span> </pre></div> </div> <p>Now you might be curious why both callback functions <code class="docutils literal"><span class="pre">return(TRUE)</span></code>.</p> <p>Can we <code class="docutils literal"><span class="pre">return(FALSE)</span></code>?</p> <p>Yes! You can stop the training early with <code class="docutils literal"><span class="pre">return(FALSE)</span></code>. See the following examples.</p> <div class="highlight-r"><div class="highlight"><pre><span></span> <span class="n">mx.callback.early.stop</span> <span class="o"><-</span> <span class="nf">function</span><span class="p">(</span><span class="n">eval.metric</span><span class="p">)</span> <span class="p">{</span> <span class="nf">function</span><span class="p">(</span><span class="n">iteration</span><span class="p">,</span> <span class="n">nbatch</span><span class="p">,</span> <span class="n">env</span><span class="p">)</span> <span class="p">{</span> <span class="nf">if </span><span class="p">(</span><span class="o">!</span><span class="nf">is.null</span><span class="p">(</span><span class="n">env</span><span class="o">$</span><span class="n">metric</span><span class="p">))</span> <span class="p">{</span> <span class="nf">if </span><span class="p">(</span><span class="o">!</span><span class="nf">is.null</span><span class="p">(</span><span class="n">eval.metric</span><span class="p">))</span> <span class="p">{</span> <span class="n">result</span> <span class="o"><-</span> <span class="n">env</span><span class="o">$</span><span class="n">metric</span><span class="o">$</span><span class="nf">get</span><span class="p">(</span><span class="n">env</span><span class="o">$</span><span class="n">eval.metric</span><span class="p">)</span> <span class="nf">if </span><span class="p">(</span><span class="n">result</span><span class="o">$</span><span class="n">value</span> <span class="o"><</span> <span class="n">eval.metric</span><span class="p">)</span> <span class="p">{</span> <span class="nf">return</span><span class="p">(</span><span class="kc">FALSE</span><span class="p">)</span> <span class="p">}</span> <span class="p">}</span> <span class="p">}</span> <span class="nf">return</span><span class="p">(</span><span class="kc">TRUE</span><span class="p">)</span> <span class="p">}</span> <span class="p">}</span> <span class="n">model</span> <span class="o"><-</span> <span class="nf">mx.model.FeedForward.create</span><span class="p">(</span> <span class="n">lro</span><span class="p">,</span> <span class="n">X</span><span class="o">=</span><span class="n">train.x</span><span class="p">,</span> <span class="n">y</span><span class="o">=</span><span class="n">train.y</span><span class="p">,</span> <span class="n">eval.data</span><span class="o">=</span><span class="nf">list</span><span class="p">(</span><span class="n">data</span><span class="o">=</span><span class="n">test.x</span><span class="p">,</span> <span class="n">label</span><span class="o">=</span><span class="n">test.y</span><span class="p">),</span> <span class="n">ctx</span><span class="o">=</span><span class="nf">mx.cpu</span><span class="p">(),</span> <span class="n">num.round</span><span class="o">=</span><span class="m">10</span><span class="p">,</span> <span class="n">array.batch.size</span><span class="o">=</span><span class="m">20</span><span class="p">,</span> <span class="n">learning.rate</span><span class="o">=</span><span class="m">2e-6</span><span class="p">,</span> <span class="n">momentum</span><span class="o">=</span><span class="m">0.9</span><span class="p">,</span> <span class="n">eval.metric</span><span class="o">=</span><span class="n">mx.metric.rmse</span><span class="p">,</span> <span class="n">epoch.end.callback</span> <span class="o">=</span> <span class="nf">mx.callback.early.stop</span><span class="p">(</span><span class="m">10</span><span class="p">))</span> </pre></div> </div> <div class="highlight-default"><div class="highlight"><pre><span></span> <span class="c1">## Auto detect layout of input matrix, use row major..</span> <span class="c1">## Start training with 1 devices</span> <span class="c1">## [1] Train-rmse=18.5897984387033</span> <span class="c1">## [1] Validation-rmse=13.5555213820571</span> <span class="c1">## [2] Train-rmse=12.5867564040256</span> <span class="c1">## [2] Validation-rmse=9.76304967080928</span> </pre></div> </div> <p>When the validation metric dips below the threshold we set, the training process stops.</p> </div> <div class="section" id="next-steps"> <span id="next-steps"></span><h2>Next Steps<a class="headerlink" href="#next-steps" title="Permalink to this headline">¶</a></h2> <div class="toctree-wrapper compound"> <ul> <li class="toctree-l1"><a class="reference external" href="/versions/0.11.0/tutorials/r/fiveMinutesNeuralNetwork.html">Neural Networks with MXNet in Five Minutes</a></li> <li class="toctree-l1"><a class="reference external" href="/versions/0.11.0/tutorials/r/classifyRealImageWithPretrainedModel.html">Classify Real-World Images with a Pretrained Model</a></li> <li class="toctree-l1"><a class="reference external" href="/versions/0.11.0/tutorials/r/mnistCompetition.html">Handwritten Digits Classification Competition</a></li> <li class="toctree-l1"><a class="reference external" href="/versions/0.11.0/tutorials/r/charRnnModel.html">Character Language Model Using RNN</a></li> </ul> </div> </div> </div> </div> </div> <div aria-label="main navigation" class="sphinxsidebar rightsidebar" role="navigation"> <div class="sphinxsidebarwrapper"> <h3><a href="../../index.html">Table Of Contents</a></h3> <ul> <li><a class="reference internal" href="#">Callback Function</a><ul> <li><a class="reference internal" href="#model-training-example">Model Training Example</a></li> <li><a class="reference internal" href="#how-to-use-callback-functions">How to Use Callback Functions</a></li> <li><a class="reference internal" href="#how-to-write-your-own-callback-functions">How to Write Your Own Callback Functions</a></li> <li><a class="reference internal" href="#next-steps">Next Steps</a></li> </ul> </li> </ul> </div> </div> </div><div class="footer"> <div class="section-disclaimer"> <div class="container"> <div> <img height="60" src="https://raw.githubusercontent.com/dmlc/web-data/master/mxnet/image/apache_incubator_logo.png"/> <p> Apache MXNet is an effort undergoing incubation at The Apache Software Foundation (ASF), <strong>sponsored by the <i>Apache Incubator</i></strong>. Incubation is required of all newly accepted projects until a further review indicates that the infrastructure, communications, and decision making process have stabilized in a manner consistent with other successful ASF projects. While incubation status is not necessarily a reflection of the completeness or stability of the code, it does indicate that the project has yet to be fully endorsed by the ASF. </p> <p> "Copyright © 2017-2018, The Apache Software Foundation Apache MXNet, MXNet, Apache, the Apache feather, and the Apache MXNet project logo are either registered trademarks or trademarks of the Apache Software Foundation." </p> </div> </div> </div> </div> <!-- pagename != index --> </div> <script crossorigin="anonymous" integrity="sha384-0mSbJDEHialfmuBBQP6A4Qrprq5OVfW37PRR3j5ELqxss1yVqOtnepnHVP9aJ7xS" src="https://maxcdn.bootstrapcdn.com/bootstrap/3.3.6/js/bootstrap.min.js"></script> <script src="../../_static/js/sidebar.js" type="text/javascript"></script> <script src="../../_static/js/search.js" type="text/javascript"></script> <script src="../../_static/js/navbar.js" type="text/javascript"></script> <script src="../../_static/js/clipboard.min.js" type="text/javascript"></script> <script src="../../_static/js/copycode.js" type="text/javascript"></script> <script src="../../_static/js/page.js" type="text/javascript"></script> <script src="../../_static/js/docversion.js" type="text/javascript"></script> <script type="text/javascript"> $('body').ready(function () { $('body').css('visibility', 'visible'); }); </script> </body> </html>