versions/0.11.0/tutorials/r/charRnnModel.html (515 lines of code) (raw):
<!DOCTYPE html>
<html lang="en">
<head>
<meta charset="utf-8"/>
<meta content="IE=edge" http-equiv="X-UA-Compatible"/>
<meta content="width=device-width, initial-scale=1" name="viewport"/>
<meta content="Char RNN Example" property="og:title">
<meta content="https://raw.githubusercontent.com/dmlc/web-data/master/mxnet/image/og-logo.png" property="og:image">
<meta content="https://raw.githubusercontent.com/dmlc/web-data/master/mxnet/image/og-logo.png" property="og:image:secure_url">
<meta content="Char RNN Example" property="og:description"/>
<title>Char RNN Example — mxnet documentation</title>
<link crossorigin="anonymous" href="https://maxcdn.bootstrapcdn.com/bootstrap/3.3.6/css/bootstrap.min.css" integrity="sha384-1q8mTJOASx8j1Au+a5WDVnPi2lkFfwwEAa8hDDdjZlpLegxhjVME1fgjWPGmkzs7" rel="stylesheet"/>
<link href="https://maxcdn.bootstrapcdn.com/font-awesome/4.5.0/css/font-awesome.min.css" rel="stylesheet"/>
<link href="../../_static/basic.css" rel="stylesheet" type="text/css">
<link href="../../_static/pygments.css" rel="stylesheet" type="text/css">
<link href="../../_static/mxnet.css" rel="stylesheet" type="text/css"/>
<script type="text/javascript">
var DOCUMENTATION_OPTIONS = {
URL_ROOT: '../../',
VERSION: '',
COLLAPSE_INDEX: false,
FILE_SUFFIX: '.html',
HAS_SOURCE: true,
SOURCELINK_SUFFIX: '.txt'
};
</script>
<script src="https://code.jquery.com/jquery-1.11.1.min.js" type="text/javascript"></script>
<script src="../../_static/underscore.js" type="text/javascript"></script>
<script src="../../_static/searchtools_custom.js" type="text/javascript"></script>
<script src="../../_static/doctools.js" type="text/javascript"></script>
<script src="../../_static/selectlang.js" type="text/javascript"></script>
<script src="https://cdnjs.cloudflare.com/ajax/libs/mathjax/2.7.1/MathJax.js?config=TeX-AMS-MML_HTMLorMML" type="text/javascript"></script>
<script type="text/javascript"> jQuery(function() { Search.loadIndex("/versions/0.11.0/searchindex.js"); Search.init();}); </script>
<!-- -->
<!-- <script type="text/javascript" src="../../_static/jquery.js"></script> -->
<!-- -->
<!-- <script type="text/javascript" src="../../_static/underscore.js"></script> -->
<!-- -->
<!-- <script type="text/javascript" src="../../_static/doctools.js"></script> -->
<!-- -->
<!-- <script type="text/javascript" src="https://cdnjs.cloudflare.com/ajax/libs/mathjax/2.7.0/MathJax.js?config=TeX-AMS-MML_HTMLorMML"></script> -->
<!-- -->
<link href="../../genindex.html" rel="index" title="Index">
<link href="../../search.html" rel="search" title="Search"/>
<link href="https://raw.githubusercontent.com/dmlc/web-data/master/mxnet/image/mxnet-icon.png" rel="icon" type="image/png"/>
</link></link></link></meta></meta></meta></head>
<body background="https://raw.githubusercontent.com/dmlc/web-data/master/mxnet/image/mxnet-background-compressed.jpeg" role="document">
<div class="content-block"><div class="navbar navbar-fixed-top">
<div class="container" id="navContainer">
<div class="innder" id="header-inner">
<h1 id="logo-wrap">
<a href="../../" id="logo"><img src="https://raw.githubusercontent.com/dmlc/web-data/master/mxnet/image/mxnet_logo.png"/></a>
</h1>
<nav class="nav-bar" id="main-nav">
<a class="main-nav-link" href="/versions/0.11.0/get_started/install.html">Install</a>
<span id="dropdown-menu-position-anchor">
<a aria-expanded="true" aria-haspopup="true" class="main-nav-link dropdown-toggle" data-toggle="dropdown" href="#" role="button">Gluon <span class="caret"></span></a>
<ul class="dropdown-menu navbar-menu" id="package-dropdown-menu">
<li><a class="main-nav-link" href="/versions/0.11.0/tutorials/gluon/gluon.html">About</a></li>
<li><a class="main-nav-link" href="https://www.d2l.ai/">Dive into Deep Learning</a></li>
<li><a class="main-nav-link" href="https://gluon-cv.mxnet.io">GluonCV Toolkit</a></li>
<li><a class="main-nav-link" href="https://gluon-nlp.mxnet.io/">GluonNLP Toolkit</a></li>
</ul>
</span>
<span id="dropdown-menu-position-anchor">
<a aria-expanded="true" aria-haspopup="true" class="main-nav-link dropdown-toggle" data-toggle="dropdown" href="#" role="button">API <span class="caret"></span></a>
<ul class="dropdown-menu navbar-menu" id="package-dropdown-menu">
<li><a class="main-nav-link" href="/versions/0.11.0/api/python/index.html">Python</a></li>
<li><a class="main-nav-link" href="/versions/0.11.0/api/c++/index.html">C++</a></li>
<li><a class="main-nav-link" href="/versions/0.11.0/api/julia/index.html">Julia</a></li>
<li><a class="main-nav-link" href="/versions/0.11.0/api/perl/index.html">Perl</a></li>
<li><a class="main-nav-link" href="/versions/0.11.0/api/r/index.html">R</a></li>
<li><a class="main-nav-link" href="/versions/0.11.0/api/scala/index.html">Scala</a></li>
</ul>
</span>
<span id="dropdown-menu-position-anchor-docs">
<a aria-expanded="true" aria-haspopup="true" class="main-nav-link dropdown-toggle" data-toggle="dropdown" href="#" role="button">Docs <span class="caret"></span></a>
<ul class="dropdown-menu navbar-menu" id="package-dropdown-menu-docs">
<li><a class="main-nav-link" href="/versions/0.11.0/how_to/faq.html">FAQ</a></li>
<li><a class="main-nav-link" href="/versions/0.11.0/tutorials/index.html">Tutorials</a>
<li><a class="main-nav-link" href="https://github.com/apache/incubator-mxnet/tree/v0.11.0/example">Examples</a></li>
<li><a class="main-nav-link" href="/versions/0.11.0/architecture/index.html">Architecture</a></li>
<li><a class="main-nav-link" href="https://cwiki.apache.org/confluence/display/MXNET/Apache+MXNet+Home">Developer Wiki</a></li>
<li><a class="main-nav-link" href="/versions/0.11.0/model_zoo/index.html">Model Zoo</a></li>
<li><a class="main-nav-link" href="https://github.com/onnx/onnx-mxnet">ONNX</a></li>
</li></ul>
</span>
<span id="dropdown-menu-position-anchor-community">
<a aria-expanded="true" aria-haspopup="true" class="main-nav-link dropdown-toggle" data-toggle="dropdown" href="#" role="button">Community <span class="caret"></span></a>
<ul class="dropdown-menu navbar-menu" id="package-dropdown-menu-community">
<li><a class="main-nav-link" href="http://discuss.mxnet.io">Forum</a></li>
<li><a class="main-nav-link" href="https://github.com/apache/incubator-mxnet/tree/v0.11.0">Github</a></li>
<li><a class="main-nav-link" href="/versions/0.11.0/community/contribute.html">Contribute</a></li>
</ul>
</span>
<span id="dropdown-menu-position-anchor-version" style="position: relative"><a href="#" class="main-nav-link dropdown-toggle" data-toggle="dropdown" role="button" aria-haspopup="true" aria-expanded="true">0.11.0<span class="caret"></span></a><ul id="package-dropdown-menu" class="dropdown-menu"><li><a href="/">master</a></li><li><a href="/versions/1.7.0/">1.7.0</a></li><li><a href=/versions/1.6.0/>1.6.0</a></li><li><a href=/versions/1.5.0/>1.5.0</a></li><li><a href=/versions/1.4.1/>1.4.1</a></li><li><a href=/versions/1.3.1/>1.3.1</a></li><li><a href=/versions/1.2.1/>1.2.1</a></li><li><a href=/versions/1.1.0/>1.1.0</a></li><li><a href=/versions/1.0.0/>1.0.0</a></li><li><a href=/versions/0.12.1/>0.12.1</a></li><li><a href=/versions/0.11.0/>0.11.0</a></li></ul></span></nav>
<script> function getRootPath(){ return "../../" } </script>
<div class="burgerIcon dropdown">
<a class="dropdown-toggle" data-toggle="dropdown" href="#" role="button">☰</a>
<ul class="dropdown-menu" id="burgerMenu">
<li><a href="/versions/0.11.0/get_started/install.html">Install</a></li>
<li><a class="main-nav-link" href="/versions/0.11.0/tutorials/index.html">Tutorials</a></li>
<li class="dropdown-submenu dropdown">
<a aria-expanded="true" aria-haspopup="true" class="dropdown-toggle burger-link" data-toggle="dropdown" href="#" tabindex="-1">Gluon</a>
<ul class="dropdown-menu navbar-menu" id="package-dropdown-menu">
<li><a class="main-nav-link" href="/versions/0.11.0/tutorials/gluon/gluon.html">About</a></li>
<li><a class="main-nav-link" href="http://gluon.mxnet.io">The Straight Dope (Tutorials)</a></li>
<li><a class="main-nav-link" href="https://gluon-cv.mxnet.io">GluonCV Toolkit</a></li>
<li><a class="main-nav-link" href="https://gluon-nlp.mxnet.io/">GluonNLP Toolkit</a></li>
</ul>
</li>
<li class="dropdown-submenu">
<a aria-expanded="true" aria-haspopup="true" class="dropdown-toggle burger-link" data-toggle="dropdown" href="#" tabindex="-1">API</a>
<ul class="dropdown-menu">
<li><a class="main-nav-link" href="/versions/0.11.0/api/python/index.html">Python</a></li>
<li><a class="main-nav-link" href="/versions/0.11.0/api/c++/index.html">C++</a></li>
<li><a class="main-nav-link" href="/versions/0.11.0/api/julia/index.html">Julia</a></li>
<li><a class="main-nav-link" href="/versions/0.11.0/api/perl/index.html">Perl</a></li>
<li><a class="main-nav-link" href="/versions/0.11.0/api/r/index.html">R</a></li>
<li><a class="main-nav-link" href="/versions/0.11.0/api/scala/index.html">Scala</a></li>
</ul>
</li>
<li class="dropdown-submenu">
<a aria-expanded="true" aria-haspopup="true" class="dropdown-toggle burger-link" data-toggle="dropdown" href="#" tabindex="-1">Docs</a>
<ul class="dropdown-menu">
<li><a href="/versions/0.11.0/how_to/faq.html" tabindex="-1">FAQ</a></li>
<li><a href="/versions/0.11.0/tutorials/index.html" tabindex="-1">Tutorials</a></li>
<li><a href="https://github.com/apache/incubator-mxnet/tree/v0.11.0/example" tabindex="-1">Examples</a></li>
<li><a href="/versions/0.11.0/architecture/index.html" tabindex="-1">Architecture</a></li>
<li><a href="https://cwiki.apache.org/confluence/display/MXNET/Apache+MXNet+Home" tabindex="-1">Developer Wiki</a></li>
<li><a href="/versions/0.11.0/model_zoo/index.html" tabindex="-1">Gluon Model Zoo</a></li>
<li><a href="https://github.com/onnx/onnx-mxnet" tabindex="-1">ONNX</a></li>
</ul>
</li>
<li class="dropdown-submenu dropdown">
<a aria-haspopup="true" class="dropdown-toggle burger-link" data-toggle="dropdown" href="#" role="button" tabindex="-1">Community</a>
<ul class="dropdown-menu">
<li><a href="http://discuss.mxnet.io" tabindex="-1">Forum</a></li>
<li><a href="https://github.com/apache/incubator-mxnet/tree/v0.11.0" tabindex="-1">Github</a></li>
<li><a href="/versions/0.11.0/community/contribute.html" tabindex="-1">Contribute</a></li>
</ul>
</li>
<li id="dropdown-menu-position-anchor-version-mobile" class="dropdown-submenu" style="position: relative"><a href="#" tabindex="-1">0.11.0</a><ul class="dropdown-menu"><li><a tabindex="-1" href=/>master</a></li><li><a tabindex="-1" href=/versions/1.6.0/>1.6.0</a></li><li><a tabindex="-1" href=/versions/1.5.0/>1.5.0</a></li><li><a tabindex="-1" href=/versions/1.4.1/>1.4.1</a></li><li><a tabindex="-1" href=/versions/1.3.1/>1.3.1</a></li><li><a tabindex="-1" href=/versions/1.2.1/>1.2.1</a></li><li><a tabindex="-1" href=/versions/1.1.0/>1.1.0</a></li><li><a tabindex="-1" href=/versions/1.0.0/>1.0.0</a></li><li><a tabindex="-1" href=/versions/0.12.1/>0.12.1</a></li><li><a tabindex="-1" href=/versions/0.11.0/>0.11.0</a></li></ul></li></ul>
</div>
<div class="plusIcon dropdown">
<a class="dropdown-toggle" data-toggle="dropdown" href="#" role="button"><span aria-hidden="true" class="glyphicon glyphicon-plus"></span></a>
<ul class="dropdown-menu dropdown-menu-right" id="plusMenu"></ul>
</div>
<div id="search-input-wrap">
<form action="../../search.html" autocomplete="off" class="" method="get" role="search">
<div class="form-group inner-addon left-addon">
<i class="glyphicon glyphicon-search"></i>
<input class="form-control" name="q" placeholder="Search" type="text"/>
</div>
<input name="check_keywords" type="hidden" value="yes">
<input name="area" type="hidden" value="default"/>
</input></form>
<div id="search-preview"></div>
</div>
<div id="searchIcon">
<span aria-hidden="true" class="glyphicon glyphicon-search"></span>
</div>
<!-- <div id="lang-select-wrap"> -->
<!-- <label id="lang-select-label"> -->
<!-- <\!-- <i class="fa fa-globe"></i> -\-> -->
<!-- <span></span> -->
<!-- </label> -->
<!-- <select id="lang-select"> -->
<!-- <option value="en">Eng</option> -->
<!-- <option value="zh">中文</option> -->
<!-- </select> -->
<!-- </div> -->
<!-- <a id="mobile-nav-toggle">
<span class="mobile-nav-toggle-bar"></span>
<span class="mobile-nav-toggle-bar"></span>
<span class="mobile-nav-toggle-bar"></span>
</a> -->
</div>
</div>
</div>
<script type="text/javascript">
$('body').css('background', 'white');
</script>
<div class="container">
<div class="row">
<div aria-label="main navigation" class="sphinxsidebar leftsidebar" role="navigation">
<div class="sphinxsidebarwrapper">
<ul>
<li class="toctree-l1"><a class="reference internal" href="../../api/python/index.html">Python Documents</a></li>
<li class="toctree-l1"><a class="reference internal" href="../../api/r/index.html">R Documents</a></li>
<li class="toctree-l1"><a class="reference internal" href="../../api/julia/index.html">Julia Documents</a></li>
<li class="toctree-l1"><a class="reference internal" href="../../api/c++/index.html">C++ Documents</a></li>
<li class="toctree-l1"><a class="reference internal" href="../../api/scala/index.html">Scala Documents</a></li>
<li class="toctree-l1"><a class="reference internal" href="../../api/perl/index.html">Perl Documents</a></li>
<li class="toctree-l1"><a class="reference internal" href="../../how_to/index.html">HowTo Documents</a></li>
<li class="toctree-l1"><a class="reference internal" href="../../architecture/index.html">System Documents</a></li>
<li class="toctree-l1"><a class="reference internal" href="../index.html">Tutorials</a></li>
</ul>
</div>
</div>
<div class="content">
<div class="page-tracker"></div>
<div class="section" id="char-rnn-example">
<span id="char-rnn-example"></span><h1>Char RNN Example<a class="headerlink" href="#char-rnn-example" title="Permalink to this headline">¶</a></h1>
<p>This tutorial shows how to use an LSTM model to build a char-level language model, and generate text from it. For demonstration purposes, we use a Shakespearean text. You can find the data on <a class="reference external" href="https://github.com/dmlc/web-data/tree/master/mxnet/tinyshakespeare">GitHub</a>.</p>
<div class="section" id="load-the-data">
<span id="load-the-data"></span><h2>Load the Data<a class="headerlink" href="#load-the-data" title="Permalink to this headline">¶</a></h2>
<p>Load in the data and preprocess it:</p>
<div class="highlight-r"><div class="highlight"><pre><span></span> <span class="nf">require</span><span class="p">(</span><span class="n">mxnet</span><span class="p">)</span>
</pre></div>
</div>
<div class="highlight-default"><div class="highlight"><pre><span></span> <span class="c1">## Loading required package: mxnet</span>
</pre></div>
</div>
<div class="highlight-default"><div class="highlight"><pre><span></span> <span class="c1">## Loading required package: methods</span>
</pre></div>
</div>
<p>Set the basic network parameters:</p>
<div class="highlight-r"><div class="highlight"><pre><span></span> <span class="n">batch.size</span> <span class="o">=</span> <span class="m">32</span>
<span class="n">seq.len</span> <span class="o">=</span> <span class="m">32</span>
<span class="n">num.hidden</span> <span class="o">=</span> <span class="m">16</span>
<span class="n">num.embed</span> <span class="o">=</span> <span class="m">16</span>
<span class="n">num.lstm.layer</span> <span class="o">=</span> <span class="m">1</span>
<span class="n">num.round</span> <span class="o">=</span> <span class="m">1</span>
<span class="n">learning.rate</span><span class="o">=</span> <span class="m">0.1</span>
<span class="n">wd</span><span class="o">=</span><span class="m">0.00001</span>
<span class="n">clip_gradient</span><span class="o">=</span><span class="m">1</span>
<span class="n">update.period</span> <span class="o">=</span> <span class="m">1</span>
</pre></div>
</div>
<p>Download the data:</p>
<div class="highlight-r"><div class="highlight"><pre><span></span> <span class="n">download.data</span> <span class="o"><-</span> <span class="nf">function</span><span class="p">(</span><span class="n">data_dir</span><span class="p">)</span> <span class="p">{</span>
<span class="nf">dir.create</span><span class="p">(</span><span class="n">data_dir</span><span class="p">,</span> <span class="n">showWarnings</span> <span class="o">=</span> <span class="kc">FALSE</span><span class="p">)</span>
<span class="nf">if </span><span class="p">(</span><span class="o">!</span><span class="nf">file.exists</span><span class="p">(</span><span class="nf">paste0</span><span class="p">(</span><span class="n">data_dir</span><span class="p">,</span><span class="s">'input.txt'</span><span class="p">)))</span> <span class="p">{</span>
<span class="nf">download.file</span><span class="p">(</span><span class="n">url</span><span class="o">=</span><span class="s">'https://raw.githubusercontent.com/dmlc/web-data/master/mxnet/tinyshakespeare/input.txt'</span><span class="p">,</span>
<span class="n">destfile</span><span class="o">=</span><span class="nf">paste0</span><span class="p">(</span><span class="n">data_dir</span><span class="p">,</span><span class="s">'input.txt'</span><span class="p">),</span> <span class="n">method</span><span class="o">=</span><span class="s">'wget'</span><span class="p">)</span>
<span class="p">}</span>
<span class="p">}</span>
</pre></div>
</div>
<p>Make a dictionary from the text:</p>
<div class="highlight-r"><div class="highlight"><pre><span></span> <span class="n">make.dict</span> <span class="o"><-</span> <span class="nf">function</span><span class="p">(</span><span class="n">text</span><span class="p">,</span> <span class="n">max.vocab</span><span class="o">=</span><span class="m">10000</span><span class="p">)</span> <span class="p">{</span>
<span class="n">text</span> <span class="o"><-</span> <span class="nf">strsplit</span><span class="p">(</span><span class="n">text</span><span class="p">,</span> <span class="s">''</span><span class="p">)</span>
<span class="n">dic</span> <span class="o"><-</span> <span class="nf">list</span><span class="p">()</span>
<span class="n">idx</span> <span class="o"><-</span> <span class="m">1</span>
<span class="nf">for </span><span class="p">(</span><span class="n">c</span> <span class="n">in</span> <span class="n">text[[1]]</span><span class="p">)</span> <span class="p">{</span>
<span class="nf">if </span><span class="p">(</span><span class="o">!</span><span class="p">(</span><span class="n">c</span> <span class="o">%in%</span> <span class="nf">names</span><span class="p">(</span><span class="n">dic</span><span class="p">)))</span> <span class="p">{</span>
<span class="n">dic[[c]]</span> <span class="o"><-</span> <span class="n">idx</span>
<span class="n">idx</span> <span class="o"><-</span> <span class="n">idx</span> <span class="o">+</span> <span class="m">1</span>
<span class="p">}</span>
<span class="p">}</span>
<span class="nf">if </span><span class="p">(</span><span class="nf">length</span><span class="p">(</span><span class="n">dic</span><span class="p">)</span> <span class="o">==</span> <span class="n">max.vocab</span> <span class="o">-</span> <span class="m">1</span><span class="p">)</span>
<span class="n">dic[[</span><span class="s">"UNKNOWN"</span><span class="n">]]</span> <span class="o"><-</span> <span class="n">idx</span>
<span class="nf">cat</span><span class="p">(</span><span class="nf">paste0</span><span class="p">(</span><span class="s">"Total unique char: "</span><span class="p">,</span> <span class="nf">length</span><span class="p">(</span><span class="n">dic</span><span class="p">),</span> <span class="s">"\n"</span><span class="p">))</span>
<span class="nf">return </span><span class="p">(</span><span class="n">dic</span><span class="p">)</span>
<span class="p">}</span>
</pre></div>
</div>
<p>Transfer the text into a data feature:</p>
<div class="highlight-r"><div class="highlight"><pre><span></span> <span class="n">make.data</span> <span class="o"><-</span> <span class="nf">function</span><span class="p">(</span><span class="n">file.path</span><span class="p">,</span> <span class="n">seq.len</span><span class="o">=</span><span class="m">32</span><span class="p">,</span> <span class="n">max.vocab</span><span class="o">=</span><span class="m">10000</span><span class="p">,</span> <span class="n">dic</span><span class="o">=</span><span class="kc">NULL</span><span class="p">)</span> <span class="p">{</span>
<span class="n">fi</span> <span class="o"><-</span> <span class="nf">file</span><span class="p">(</span><span class="n">file.path</span><span class="p">,</span> <span class="s">"r"</span><span class="p">)</span>
<span class="n">text</span> <span class="o"><-</span> <span class="nf">paste</span><span class="p">(</span><span class="nf">readLines</span><span class="p">(</span><span class="n">fi</span><span class="p">),</span> <span class="n">collapse</span><span class="o">=</span><span class="s">"\n"</span><span class="p">)</span>
<span class="nf">close</span><span class="p">(</span><span class="n">fi</span><span class="p">)</span>
<span class="nf">if </span><span class="p">(</span><span class="nf">is.null</span><span class="p">(</span><span class="n">dic</span><span class="p">))</span>
<span class="n">dic</span> <span class="o"><-</span> <span class="nf">make.dict</span><span class="p">(</span><span class="n">text</span><span class="p">,</span> <span class="n">max.vocab</span><span class="p">)</span>
<span class="n">lookup.table</span> <span class="o"><-</span> <span class="nf">list</span><span class="p">()</span>
<span class="nf">for </span><span class="p">(</span><span class="n">c</span> <span class="n">in</span> <span class="nf">names</span><span class="p">(</span><span class="n">dic</span><span class="p">))</span> <span class="p">{</span>
<span class="n">idx</span> <span class="o"><-</span> <span class="n">dic[[c]]</span>
<span class="n">lookup.table[[idx]]</span> <span class="o"><-</span> <span class="n">c</span>
<span class="p">}</span>
<span class="n">char.lst</span> <span class="o"><-</span> <span class="nf">strsplit</span><span class="p">(</span><span class="n">text</span><span class="p">,</span> <span class="s">''</span><span class="p">)</span><span class="n">[[1]]</span>
<span class="n">num.seq</span> <span class="o"><-</span> <span class="nf">as.integer</span><span class="p">(</span><span class="nf">length</span><span class="p">(</span><span class="n">char.lst</span><span class="p">)</span> <span class="o">/</span> <span class="n">seq.len</span><span class="p">)</span>
<span class="n">char.lst</span> <span class="o"><-</span> <span class="n">char.lst[1</span><span class="o">:</span><span class="p">(</span><span class="n">num.seq</span> <span class="o">*</span> <span class="n">seq.len</span><span class="p">)</span><span class="n">]</span>
<span class="n">data</span> <span class="o"><-</span> <span class="nf">array</span><span class="p">(</span><span class="m">0</span><span class="p">,</span> <span class="n">dim</span><span class="o">=</span><span class="nf">c</span><span class="p">(</span><span class="n">seq.len</span><span class="p">,</span> <span class="n">num.seq</span><span class="p">))</span>
<span class="n">idx</span> <span class="o"><-</span> <span class="m">1</span>
<span class="nf">for </span><span class="p">(</span><span class="n">i</span> <span class="n">in</span> <span class="m">1</span><span class="o">:</span><span class="n">num.seq</span><span class="p">)</span> <span class="p">{</span>
<span class="nf">for </span><span class="p">(</span><span class="n">j</span> <span class="n">in</span> <span class="m">1</span><span class="o">:</span><span class="n">seq.len</span><span class="p">)</span> <span class="p">{</span>
<span class="nf">if </span><span class="p">(</span><span class="n">char.lst[idx]</span> <span class="o">%in%</span> <span class="nf">names</span><span class="p">(</span><span class="n">dic</span><span class="p">))</span>
<span class="n">data[j</span><span class="p">,</span> <span class="n">i]</span> <span class="o"><-</span> <span class="n">dic[[</span> <span class="n">char.lst[idx]</span> <span class="n">]]</span><span class="m">-1</span>
<span class="n">else</span> <span class="p">{</span>
<span class="n">data[j</span><span class="p">,</span> <span class="n">i]</span> <span class="o"><-</span> <span class="n">dic[[</span><span class="s">"UNKNOWN"</span><span class="n">]]</span><span class="m">-1</span>
<span class="p">}</span>
<span class="n">idx</span> <span class="o"><-</span> <span class="n">idx</span> <span class="o">+</span> <span class="m">1</span>
<span class="p">}</span>
<span class="p">}</span>
<span class="nf">return </span><span class="p">(</span><span class="nf">list</span><span class="p">(</span><span class="n">data</span><span class="o">=</span><span class="n">data</span><span class="p">,</span> <span class="n">dic</span><span class="o">=</span><span class="n">dic</span><span class="p">,</span> <span class="n">lookup.table</span><span class="o">=</span><span class="n">lookup.table</span><span class="p">))</span>
<span class="p">}</span>
</pre></div>
</div>
<p>Move the tail text:</p>
<div class="highlight-r"><div class="highlight"><pre><span></span> <span class="n">drop.tail</span> <span class="o"><-</span> <span class="nf">function</span><span class="p">(</span><span class="n">X</span><span class="p">,</span> <span class="n">batch.size</span><span class="p">)</span> <span class="p">{</span>
<span class="n">shape</span> <span class="o"><-</span> <span class="nf">dim</span><span class="p">(</span><span class="n">X</span><span class="p">)</span>
<span class="n">nstep</span> <span class="o"><-</span> <span class="nf">as.integer</span><span class="p">(</span><span class="n">shape[2]</span> <span class="o">/</span> <span class="n">batch.size</span><span class="p">)</span>
<span class="nf">return </span><span class="p">(</span><span class="n">X[</span><span class="p">,</span> <span class="m">1</span><span class="o">:</span><span class="p">(</span><span class="n">nstep</span> <span class="o">*</span> <span class="n">batch.size</span><span class="p">)</span><span class="n">]</span><span class="p">)</span>
<span class="p">}</span>
</pre></div>
</div>
<p>Get the label of X:</p>
<div class="highlight-r"><div class="highlight"><pre><span></span> <span class="n">get.label</span> <span class="o"><-</span> <span class="nf">function</span><span class="p">(</span><span class="n">X</span><span class="p">)</span> <span class="p">{</span>
<span class="n">label</span> <span class="o"><-</span> <span class="nf">array</span><span class="p">(</span><span class="m">0</span><span class="p">,</span> <span class="n">dim</span><span class="o">=</span><span class="nf">dim</span><span class="p">(</span><span class="n">X</span><span class="p">))</span>
<span class="n">d</span> <span class="o"><-</span> <span class="nf">dim</span><span class="p">(</span><span class="n">X</span><span class="p">)</span><span class="n">[1]</span>
<span class="n">w</span> <span class="o"><-</span> <span class="nf">dim</span><span class="p">(</span><span class="n">X</span><span class="p">)</span><span class="n">[2]</span>
<span class="nf">for </span><span class="p">(</span><span class="n">i</span> <span class="n">in</span> <span class="m">0</span><span class="o">:</span><span class="p">(</span><span class="n">w</span><span class="m">-1</span><span class="p">))</span> <span class="p">{</span>
<span class="nf">for </span><span class="p">(</span><span class="n">j</span> <span class="n">in</span> <span class="m">1</span><span class="o">:</span><span class="n">d</span><span class="p">)</span> <span class="p">{</span>
<span class="n">label[i</span><span class="o">*</span><span class="n">d</span><span class="o">+</span><span class="n">j]</span> <span class="o"><-</span> <span class="n">X</span><span class="nf">[</span><span class="p">(</span><span class="n">i</span><span class="o">*</span><span class="n">d</span><span class="o">+</span><span class="n">j</span><span class="p">)</span><span class="o">%%</span><span class="p">(</span><span class="n">w</span><span class="o">*</span><span class="n">d</span><span class="p">)</span><span class="m">+1</span><span class="n">]</span>
<span class="p">}</span>
<span class="p">}</span>
<span class="nf">return </span><span class="p">(</span><span class="n">label</span><span class="p">)</span>
<span class="p">}</span>
</pre></div>
</div>
<p>Get the training data and evaluation data:</p>
<div class="highlight-r"><div class="highlight"><pre><span></span> <span class="nf">download.data</span><span class="p">(</span><span class="s">"./data/"</span><span class="p">)</span>
<span class="n">ret</span> <span class="o"><-</span> <span class="nf">make.data</span><span class="p">(</span><span class="s">"./data/input.txt"</span><span class="p">,</span> <span class="n">seq.len</span><span class="o">=</span><span class="n">seq.len</span><span class="p">)</span>
</pre></div>
</div>
<div class="highlight-default"><div class="highlight"><pre><span></span> <span class="c1">## Total unique char: 65</span>
</pre></div>
</div>
<div class="highlight-r"><div class="highlight"><pre><span></span> <span class="n">X</span> <span class="o"><-</span> <span class="n">ret</span><span class="o">$</span><span class="n">data</span>
<span class="n">dic</span> <span class="o"><-</span> <span class="n">ret</span><span class="o">$</span><span class="n">dic</span>
<span class="n">lookup.table</span> <span class="o"><-</span> <span class="n">ret</span><span class="o">$</span><span class="n">lookup.table</span>
<span class="n">vocab</span> <span class="o"><-</span> <span class="nf">length</span><span class="p">(</span><span class="n">dic</span><span class="p">)</span>
<span class="n">shape</span> <span class="o"><-</span> <span class="nf">dim</span><span class="p">(</span><span class="n">X</span><span class="p">)</span>
<span class="n">train.val.fraction</span> <span class="o"><-</span> <span class="m">0.9</span>
<span class="n">size</span> <span class="o"><-</span> <span class="n">shape[2]</span>
<span class="n">X.train.data</span> <span class="o"><-</span> <span class="n">X[</span><span class="p">,</span> <span class="m">1</span><span class="o">:</span><span class="nf">as.integer</span><span class="p">(</span><span class="n">size</span> <span class="o">*</span> <span class="n">train.val.fraction</span><span class="p">)</span><span class="n">]</span>
<span class="n">X.val.data</span> <span class="o"><-</span> <span class="n">X[</span><span class="p">,</span> <span class="o">-</span><span class="p">(</span><span class="m">1</span><span class="o">:</span><span class="nf">as.integer</span><span class="p">(</span><span class="n">size</span> <span class="o">*</span> <span class="n">train.val.fraction</span><span class="p">))</span><span class="n">]</span>
<span class="n">X.train.data</span> <span class="o"><-</span> <span class="nf">drop.tail</span><span class="p">(</span><span class="n">X.train.data</span><span class="p">,</span> <span class="n">batch.size</span><span class="p">)</span>
<span class="n">X.val.data</span> <span class="o"><-</span> <span class="nf">drop.tail</span><span class="p">(</span><span class="n">X.val.data</span><span class="p">,</span> <span class="n">batch.size</span><span class="p">)</span>
<span class="n">X.train.label</span> <span class="o"><-</span> <span class="nf">get.label</span><span class="p">(</span><span class="n">X.train.data</span><span class="p">)</span>
<span class="n">X.val.label</span> <span class="o"><-</span> <span class="nf">get.label</span><span class="p">(</span><span class="n">X.val.data</span><span class="p">)</span>
<span class="n">X.train</span> <span class="o"><-</span> <span class="nf">list</span><span class="p">(</span><span class="n">data</span><span class="o">=</span><span class="n">X.train.data</span><span class="p">,</span> <span class="n">label</span><span class="o">=</span><span class="n">X.train.label</span><span class="p">)</span>
<span class="n">X.val</span> <span class="o"><-</span> <span class="nf">list</span><span class="p">(</span><span class="n">data</span><span class="o">=</span><span class="n">X.val.data</span><span class="p">,</span> <span class="n">label</span><span class="o">=</span><span class="n">X.val.label</span><span class="p">)</span>
</pre></div>
</div>
</div>
<div class="section" id="train-the-model">
<span id="train-the-model"></span><h2>Train the Model<a class="headerlink" href="#train-the-model" title="Permalink to this headline">¶</a></h2>
<p>In <code class="docutils literal"><span class="pre">mxnet</span></code>, we have a function called <code class="docutils literal"><span class="pre">mx.lstm</span></code> so that users can build a general LSTM model:</p>
<div class="highlight-r"><div class="highlight"><pre><span></span> <span class="n">model</span> <span class="o"><-</span> <span class="nf">mx.lstm</span><span class="p">(</span><span class="n">X.train</span><span class="p">,</span> <span class="n">X.val</span><span class="p">,</span>
<span class="n">ctx</span><span class="o">=</span><span class="nf">mx.cpu</span><span class="p">(),</span>
<span class="n">num.round</span><span class="o">=</span><span class="n">num.round</span><span class="p">,</span>
<span class="n">update.period</span><span class="o">=</span><span class="n">update.period</span><span class="p">,</span>
<span class="n">num.lstm.layer</span><span class="o">=</span><span class="n">num.lstm.layer</span><span class="p">,</span>
<span class="n">seq.len</span><span class="o">=</span><span class="n">seq.len</span><span class="p">,</span>
<span class="n">num.hidden</span><span class="o">=</span><span class="n">num.hidden</span><span class="p">,</span>
<span class="n">num.embed</span><span class="o">=</span><span class="n">num.embed</span><span class="p">,</span>
<span class="n">num.label</span><span class="o">=</span><span class="n">vocab</span><span class="p">,</span>
<span class="n">batch.size</span><span class="o">=</span><span class="n">batch.size</span><span class="p">,</span>
<span class="n">input.size</span><span class="o">=</span><span class="n">vocab</span><span class="p">,</span>
<span class="n">initializer</span><span class="o">=</span><span class="nf">mx.init.uniform</span><span class="p">(</span><span class="m">0.1</span><span class="p">),</span>
<span class="n">learning.rate</span><span class="o">=</span><span class="n">learning.rate</span><span class="p">,</span>
<span class="n">wd</span><span class="o">=</span><span class="n">wd</span><span class="p">,</span>
<span class="n">clip_gradient</span><span class="o">=</span><span class="n">clip_gradient</span><span class="p">)</span>
</pre></div>
</div>
<div class="highlight-default"><div class="highlight"><pre><span></span> <span class="c1">## Epoch [31] Train: NLL=3.53787130224343, Perp=34.3936275728271</span>
<span class="c1">## Epoch [62] Train: NLL=3.43087958036949, Perp=30.903813186055</span>
<span class="c1">## Epoch [93] Train: NLL=3.39771238228587, Perp=29.8956319855751</span>
<span class="c1">## Epoch [124] Train: NLL=3.37581711716687, Perp=29.2481732041015</span>
<span class="c1">## Epoch [155] Train: NLL=3.34523331338447, Perp=28.3671933405139</span>
<span class="c1">## Epoch [186] Train: NLL=3.30756356274787, Perp=27.31848454823</span>
<span class="c1">## Epoch [217] Train: NLL=3.25642968403829, Perp=25.9566978956055</span>
<span class="c1">## Epoch [248] Train: NLL=3.19825967486207, Perp=24.4898727477925</span>
<span class="c1">## Epoch [279] Train: NLL=3.14013971549828, Perp=23.1070950525017</span>
<span class="c1">## Epoch [310] Train: NLL=3.08747601837462, Perp=21.9216781782189</span>
<span class="c1">## Epoch [341] Train: NLL=3.04015595674863, Perp=20.9085038031042</span>
<span class="c1">## Epoch [372] Train: NLL=2.99839339255659, Perp=20.0532932584534</span>
<span class="c1">## Epoch [403] Train: NLL=2.95940091012609, Perp=19.2864139984503</span>
<span class="c1">## Epoch [434] Train: NLL=2.92603311380224, Perp=18.6534872738302</span>
<span class="c1">## Epoch [465] Train: NLL=2.89482756896395, Perp=18.0803835531869</span>
<span class="c1">## Epoch [496] Train: NLL=2.86668230478397, Perp=17.5786009078994</span>
<span class="c1">## Epoch [527] Train: NLL=2.84089368534943, Perp=17.1310684830416</span>
<span class="c1">## Epoch [558] Train: NLL=2.81725862932279, Perp=16.7309220880514</span>
<span class="c1">## Epoch [589] Train: NLL=2.79518870141492, Perp=16.3657166956952</span>
<span class="c1">## Epoch [620] Train: NLL=2.77445683225304, Perp=16.0299176962855</span>
<span class="c1">## Epoch [651] Train: NLL=2.75490970113174, Perp=15.719621374694</span>
<span class="c1">## Epoch [682] Train: NLL=2.73697900634351, Perp=15.4402696117257</span>
<span class="c1">## Epoch [713] Train: NLL=2.72059739336781, Perp=15.1893935780915</span>
<span class="c1">## Epoch [744] Train: NLL=2.70462837571585, Perp=14.948760335793</span>
<span class="c1">## Epoch [775] Train: NLL=2.68909904683828, Perp=14.7184093476224</span>
<span class="c1">## Epoch [806] Train: NLL=2.67460054451836, Perp=14.5065539595711</span>
<span class="c1">## Epoch [837] Train: NLL=2.66078997776751, Perp=14.3075873113043</span>
<span class="c1">## Epoch [868] Train: NLL=2.6476781639279, Perp=14.1212134100373</span>
<span class="c1">## Epoch [899] Train: NLL=2.63529039846876, Perp=13.9473621677371</span>
<span class="c1">## Epoch [930] Train: NLL=2.62367693518974, Perp=13.7863219168709</span>
<span class="c1">## Epoch [961] Train: NLL=2.61238282674384, Perp=13.6314936713501</span>
<span class="c1">## Iter [1] Train: Time: 10301.6818172932 sec, NLL=2.60536539345356, Perp=13.5361704272949</span>
<span class="c1">## Iter [1] Val: NLL=2.26093848746227, Perp=9.59208699731232</span>
</pre></div>
</div>
</div>
<div class="section" id="build-inference-from-the-model">
<span id="build-inference-from-the-model"></span><h2>Build Inference from the Model<a class="headerlink" href="#build-inference-from-the-model" title="Permalink to this headline">¶</a></h2>
<p>Use the helper function for random sample:</p>
<div class="highlight-r"><div class="highlight"><pre><span></span> <span class="n">cdf</span> <span class="o"><-</span> <span class="nf">function</span><span class="p">(</span><span class="n">weights</span><span class="p">)</span> <span class="p">{</span>
<span class="n">total</span> <span class="o"><-</span> <span class="nf">sum</span><span class="p">(</span><span class="n">weights</span><span class="p">)</span>
<span class="n">result</span> <span class="o"><-</span> <span class="nf">c</span><span class="p">()</span>
<span class="n">cumsum</span> <span class="o"><-</span> <span class="m">0</span>
<span class="nf">for </span><span class="p">(</span><span class="n">w</span> <span class="n">in</span> <span class="n">weights</span><span class="p">)</span> <span class="p">{</span>
<span class="n">cumsum</span> <span class="o"><-</span> <span class="n">cumsum</span><span class="o">+</span><span class="n">w</span>
<span class="n">result</span> <span class="o"><-</span> <span class="nf">c</span><span class="p">(</span><span class="n">result</span><span class="p">,</span> <span class="n">cumsum</span> <span class="o">/</span> <span class="n">total</span><span class="p">)</span>
<span class="p">}</span>
<span class="nf">return </span><span class="p">(</span><span class="n">result</span><span class="p">)</span>
<span class="p">}</span>
<span class="n">search.val</span> <span class="o"><-</span> <span class="nf">function</span><span class="p">(</span><span class="n">cdf</span><span class="p">,</span> <span class="n">x</span><span class="p">)</span> <span class="p">{</span>
<span class="n">l</span> <span class="o"><-</span> <span class="m">1</span>
<span class="n">r</span> <span class="o"><-</span> <span class="nf">length</span><span class="p">(</span><span class="n">cdf</span><span class="p">)</span>
<span class="nf">while </span><span class="p">(</span><span class="n">l</span> <span class="o"><=</span> <span class="n">r</span><span class="p">)</span> <span class="p">{</span>
<span class="n">m</span> <span class="o"><-</span> <span class="nf">as.integer</span><span class="p">((</span><span class="n">l</span><span class="o">+</span><span class="n">r</span><span class="p">)</span><span class="o">/</span><span class="m">2</span><span class="p">)</span>
<span class="nf">if </span><span class="p">(</span><span class="n">cdf[m]</span> <span class="o"><</span> <span class="n">x</span><span class="p">)</span> <span class="p">{</span>
<span class="n">l</span> <span class="o"><-</span> <span class="n">m</span><span class="m">+1</span>
<span class="p">}</span> <span class="n">else</span> <span class="p">{</span>
<span class="n">r</span> <span class="o"><-</span> <span class="n">m</span><span class="m">-1</span>
<span class="p">}</span>
<span class="p">}</span>
<span class="nf">return </span><span class="p">(</span><span class="n">l</span><span class="p">)</span>
<span class="p">}</span>
<span class="n">choice</span> <span class="o"><-</span> <span class="nf">function</span><span class="p">(</span><span class="n">weights</span><span class="p">)</span> <span class="p">{</span>
<span class="n">cdf.vals</span> <span class="o"><-</span> <span class="nf">cdf</span><span class="p">(</span><span class="nf">as.array</span><span class="p">(</span><span class="n">weights</span><span class="p">))</span>
<span class="n">x</span> <span class="o"><-</span> <span class="nf">runif</span><span class="p">(</span><span class="m">1</span><span class="p">)</span>
<span class="n">idx</span> <span class="o"><-</span> <span class="nf">search.val</span><span class="p">(</span><span class="n">cdf.vals</span><span class="p">,</span> <span class="n">x</span><span class="p">)</span>
<span class="nf">return </span><span class="p">(</span><span class="n">idx</span><span class="p">)</span>
<span class="p">}</span>
</pre></div>
</div>
<p>Use random output or fixed output by choosing the greatest probability:</p>
<div class="highlight-r"><div class="highlight"><pre><span></span> <span class="n">make.output</span> <span class="o"><-</span> <span class="nf">function</span><span class="p">(</span><span class="n">prob</span><span class="p">,</span> <span class="n">sample</span><span class="o">=</span><span class="kc">FALSE</span><span class="p">)</span> <span class="p">{</span>
<span class="nf">if </span><span class="p">(</span><span class="o">!</span><span class="n">sample</span><span class="p">)</span> <span class="p">{</span>
<span class="n">idx</span> <span class="o"><-</span> <span class="nf">which.max</span><span class="p">(</span><span class="nf">as.array</span><span class="p">(</span><span class="n">prob</span><span class="p">))</span>
<span class="p">}</span>
<span class="n">else</span> <span class="p">{</span>
<span class="n">idx</span> <span class="o"><-</span> <span class="nf">choice</span><span class="p">(</span><span class="n">prob</span><span class="p">)</span>
<span class="p">}</span>
<span class="nf">return </span><span class="p">(</span><span class="n">idx</span><span class="p">)</span>
<span class="p">}</span>
</pre></div>
</div>
<p>In <code class="docutils literal"><span class="pre">mxnet</span></code>, we have a function called <code class="docutils literal"><span class="pre">mx.lstm.inference</span></code> so that users can build an inference from an LSTM model, and then use the <code class="docutils literal"><span class="pre">mx.lstm.forward</span></code> function to get forward output from the inference.</p>
<p>Build an inference from the model:</p>
<div class="highlight-r"><div class="highlight"><pre><span></span> <span class="n">infer.model</span> <span class="o"><-</span> <span class="nf">mx.lstm.inference</span><span class="p">(</span><span class="n">num.lstm.layer</span><span class="o">=</span><span class="n">num.lstm.layer</span><span class="p">,</span>
<span class="n">input.size</span><span class="o">=</span><span class="n">vocab</span><span class="p">,</span>
<span class="n">num.hidden</span><span class="o">=</span><span class="n">num.hidden</span><span class="p">,</span>
<span class="n">num.embed</span><span class="o">=</span><span class="n">num.embed</span><span class="p">,</span>
<span class="n">num.label</span><span class="o">=</span><span class="n">vocab</span><span class="p">,</span>
<span class="n">arg.params</span><span class="o">=</span><span class="n">model</span><span class="o">$</span><span class="n">arg.params</span><span class="p">,</span>
<span class="n">ctx</span><span class="o">=</span><span class="nf">mx.cpu</span><span class="p">())</span>
</pre></div>
</div>
<p>Generate a sequence of 75 characters using the <code class="docutils literal"><span class="pre">mx.lstm.forward</span></code> function:</p>
<div class="highlight-r"><div class="highlight"><pre><span></span> <span class="n">start</span> <span class="o"><-</span> <span class="s">'a'</span>
<span class="n">seq.len</span> <span class="o"><-</span> <span class="m">75</span>
<span class="n">random.sample</span> <span class="o"><-</span> <span class="kc">TRUE</span>
<span class="n">last.id</span> <span class="o"><-</span> <span class="n">dic[[start]]</span>
<span class="n">out</span> <span class="o"><-</span> <span class="s">"a"</span>
<span class="nf">for </span><span class="p">(</span><span class="n">i</span> <span class="nf">in </span><span class="p">(</span><span class="m">1</span><span class="o">:</span><span class="p">(</span><span class="n">seq.len</span><span class="m">-1</span><span class="p">)))</span> <span class="p">{</span>
<span class="n">input</span> <span class="o"><-</span> <span class="nf">c</span><span class="p">(</span><span class="n">last.id</span><span class="m">-1</span><span class="p">)</span>
<span class="n">ret</span> <span class="o"><-</span> <span class="nf">mx.lstm.forward</span><span class="p">(</span><span class="n">infer.model</span><span class="p">,</span> <span class="n">input</span><span class="p">,</span> <span class="kc">FALSE</span><span class="p">)</span>
<span class="n">infer.model</span> <span class="o"><-</span> <span class="n">ret</span><span class="o">$</span><span class="n">model</span>
<span class="n">prob</span> <span class="o"><-</span> <span class="n">ret</span><span class="o">$</span><span class="n">prob</span>
<span class="n">last.id</span> <span class="o"><-</span> <span class="nf">make.output</span><span class="p">(</span><span class="n">prob</span><span class="p">,</span> <span class="n">random.sample</span><span class="p">)</span>
<span class="n">out</span> <span class="o"><-</span> <span class="nf">paste0</span><span class="p">(</span><span class="n">out</span><span class="p">,</span> <span class="n">lookup.table[[last.id]]</span><span class="p">)</span>
<span class="p">}</span>
<span class="nf">cat </span><span class="p">(</span><span class="nf">paste0</span><span class="p">(</span><span class="n">out</span><span class="p">,</span> <span class="s">"\n"</span><span class="p">))</span>
</pre></div>
</div>
<p>The result:</p>
<div class="highlight-default"><div class="highlight"><pre><span></span> <span class="n">ah</span> <span class="ow">not</span> <span class="n">a</span> <span class="n">drobl</span> <span class="n">greens</span>
<span class="n">Settled</span> <span class="n">asing</span> <span class="n">lately</span> <span class="n">sistering</span> <span class="n">sounted</span> <span class="n">to</span> <span class="n">their</span> <span class="n">hight</span>
</pre></div>
</div>
</div>
<div class="section" id="create-other-rnn-models">
<span id="create-other-rnn-models"></span><h2>Create Other RNN Models<a class="headerlink" href="#create-other-rnn-models" title="Permalink to this headline">¶</a></h2>
<p>In <code class="docutils literal"><span class="pre">mxnet</span></code>, other RNN models, like custom RNN and GRU, are also provided:</p>
<ul class="simple">
<li>For a custom RNN model, you can replace <code class="docutils literal"><span class="pre">mx.lstm</span></code> with <code class="docutils literal"><span class="pre">mx.rnn</span></code> to train an RNN model. You can replace <code class="docutils literal"><span class="pre">mx.lstm.inference</span></code> and <code class="docutils literal"><span class="pre">mx.lstm.forward</span></code> with <code class="docutils literal"><span class="pre">mx.rnn.inference</span></code> and <code class="docutils literal"><span class="pre">mx.rnn.forward</span></code> to build inference from an RNN model and get the forward result from the inference model.</li>
<li>For a GRU model, you can replace <code class="docutils literal"><span class="pre">mx.lstm</span></code> with <code class="docutils literal"><span class="pre">mx.gru</span></code> to train a GRU model. You can replace <code class="docutils literal"><span class="pre">mx.lstm.inference</span></code> and <code class="docutils literal"><span class="pre">mx.lstm.forward</span></code> with <code class="docutils literal"><span class="pre">mx.gru.inference</span></code> and <code class="docutils literal"><span class="pre">mx.gru.forward</span></code> to build inference from a GRU model and get the forward result from the inference model.</li>
</ul>
</div>
<div class="section" id="next-steps">
<span id="next-steps"></span><h2>Next Steps<a class="headerlink" href="#next-steps" title="Permalink to this headline">¶</a></h2>
<div class="toctree-wrapper compound">
<ul>
<li class="toctree-l1"><a class="reference external" href="/versions/0.11.0/tutorials/index.html">MXNet tutorials index</a></li>
</ul>
</div>
</div>
</div>
</div>
</div>
<div aria-label="main navigation" class="sphinxsidebar rightsidebar" role="navigation">
<div class="sphinxsidebarwrapper">
<h3><a href="../../index.html">Table Of Contents</a></h3>
<ul>
<li><a class="reference internal" href="#">Char RNN Example</a><ul>
<li><a class="reference internal" href="#load-the-data">Load the Data</a></li>
<li><a class="reference internal" href="#train-the-model">Train the Model</a></li>
<li><a class="reference internal" href="#build-inference-from-the-model">Build Inference from the Model</a></li>
<li><a class="reference internal" href="#create-other-rnn-models">Create Other RNN Models</a></li>
<li><a class="reference internal" href="#next-steps">Next Steps</a></li>
</ul>
</li>
</ul>
</div>
</div>
</div><div class="footer">
<div class="section-disclaimer">
<div class="container">
<div>
<img height="60" src="https://raw.githubusercontent.com/dmlc/web-data/master/mxnet/image/apache_incubator_logo.png"/>
<p>
Apache MXNet is an effort undergoing incubation at The Apache Software Foundation (ASF), <strong>sponsored by the <i>Apache Incubator</i></strong>. Incubation is required of all newly accepted projects until a further review indicates that the infrastructure, communications, and decision making process have stabilized in a manner consistent with other successful ASF projects. While incubation status is not necessarily a reflection of the completeness or stability of the code, it does indicate that the project has yet to be fully endorsed by the ASF.
</p>
<p>
"Copyright © 2017-2018, The Apache Software Foundation
Apache MXNet, MXNet, Apache, the Apache feather, and the Apache MXNet project logo are either registered trademarks or trademarks of the Apache Software Foundation."
</p>
</div>
</div>
</div>
</div> <!-- pagename != index -->
</div>
<script crossorigin="anonymous" integrity="sha384-0mSbJDEHialfmuBBQP6A4Qrprq5OVfW37PRR3j5ELqxss1yVqOtnepnHVP9aJ7xS" src="https://maxcdn.bootstrapcdn.com/bootstrap/3.3.6/js/bootstrap.min.js"></script>
<script src="../../_static/js/sidebar.js" type="text/javascript"></script>
<script src="../../_static/js/search.js" type="text/javascript"></script>
<script src="../../_static/js/navbar.js" type="text/javascript"></script>
<script src="../../_static/js/clipboard.min.js" type="text/javascript"></script>
<script src="../../_static/js/copycode.js" type="text/javascript"></script>
<script src="../../_static/js/page.js" type="text/javascript"></script>
<script src="../../_static/js/docversion.js" type="text/javascript"></script>
<script type="text/javascript">
$('body').ready(function () {
$('body').css('visibility', 'visible');
});
</script>
</body>
</html>