versions/0.11.0/tutorials/r/charRnnModel.html (515 lines of code) (raw):

<!DOCTYPE html> <html lang="en"> <head> <meta charset="utf-8"/> <meta content="IE=edge" http-equiv="X-UA-Compatible"/> <meta content="width=device-width, initial-scale=1" name="viewport"/> <meta content="Char RNN Example" property="og:title"> <meta content="https://raw.githubusercontent.com/dmlc/web-data/master/mxnet/image/og-logo.png" property="og:image"> <meta content="https://raw.githubusercontent.com/dmlc/web-data/master/mxnet/image/og-logo.png" property="og:image:secure_url"> <meta content="Char RNN Example" property="og:description"/> <title>Char RNN Example — mxnet documentation</title> <link crossorigin="anonymous" href="https://maxcdn.bootstrapcdn.com/bootstrap/3.3.6/css/bootstrap.min.css" integrity="sha384-1q8mTJOASx8j1Au+a5WDVnPi2lkFfwwEAa8hDDdjZlpLegxhjVME1fgjWPGmkzs7" rel="stylesheet"/> <link href="https://maxcdn.bootstrapcdn.com/font-awesome/4.5.0/css/font-awesome.min.css" rel="stylesheet"/> <link href="../../_static/basic.css" rel="stylesheet" type="text/css"> <link href="../../_static/pygments.css" rel="stylesheet" type="text/css"> <link href="../../_static/mxnet.css" rel="stylesheet" type="text/css"/> <script type="text/javascript"> var DOCUMENTATION_OPTIONS = { URL_ROOT: '../../', VERSION: '', COLLAPSE_INDEX: false, FILE_SUFFIX: '.html', HAS_SOURCE: true, SOURCELINK_SUFFIX: '.txt' }; </script> <script src="https://code.jquery.com/jquery-1.11.1.min.js" type="text/javascript"></script> <script src="../../_static/underscore.js" type="text/javascript"></script> <script src="../../_static/searchtools_custom.js" type="text/javascript"></script> <script src="../../_static/doctools.js" type="text/javascript"></script> <script src="../../_static/selectlang.js" type="text/javascript"></script> <script src="https://cdnjs.cloudflare.com/ajax/libs/mathjax/2.7.1/MathJax.js?config=TeX-AMS-MML_HTMLorMML" type="text/javascript"></script> <script type="text/javascript"> jQuery(function() { Search.loadIndex("/versions/0.11.0/searchindex.js"); Search.init();}); </script> <!-- --> <!-- <script type="text/javascript" src="../../_static/jquery.js"></script> --> <!-- --> <!-- <script type="text/javascript" src="../../_static/underscore.js"></script> --> <!-- --> <!-- <script type="text/javascript" src="../../_static/doctools.js"></script> --> <!-- --> <!-- <script type="text/javascript" src="https://cdnjs.cloudflare.com/ajax/libs/mathjax/2.7.0/MathJax.js?config=TeX-AMS-MML_HTMLorMML"></script> --> <!-- --> <link href="../../genindex.html" rel="index" title="Index"> <link href="../../search.html" rel="search" title="Search"/> <link href="https://raw.githubusercontent.com/dmlc/web-data/master/mxnet/image/mxnet-icon.png" rel="icon" type="image/png"/> </link></link></link></meta></meta></meta></head> <body background="https://raw.githubusercontent.com/dmlc/web-data/master/mxnet/image/mxnet-background-compressed.jpeg" role="document"> <div class="content-block"><div class="navbar navbar-fixed-top"> <div class="container" id="navContainer"> <div class="innder" id="header-inner"> <h1 id="logo-wrap"> <a href="../../" id="logo"><img src="https://raw.githubusercontent.com/dmlc/web-data/master/mxnet/image/mxnet_logo.png"/></a> </h1> <nav class="nav-bar" id="main-nav"> <a class="main-nav-link" href="/versions/0.11.0/get_started/install.html">Install</a> <span id="dropdown-menu-position-anchor"> <a aria-expanded="true" aria-haspopup="true" class="main-nav-link dropdown-toggle" data-toggle="dropdown" href="#" role="button">Gluon <span class="caret"></span></a> <ul class="dropdown-menu navbar-menu" id="package-dropdown-menu"> <li><a class="main-nav-link" href="/versions/0.11.0/tutorials/gluon/gluon.html">About</a></li> <li><a class="main-nav-link" href="https://www.d2l.ai/">Dive into Deep Learning</a></li> <li><a class="main-nav-link" href="https://gluon-cv.mxnet.io">GluonCV Toolkit</a></li> <li><a class="main-nav-link" href="https://gluon-nlp.mxnet.io/">GluonNLP Toolkit</a></li> </ul> </span> <span id="dropdown-menu-position-anchor"> <a aria-expanded="true" aria-haspopup="true" class="main-nav-link dropdown-toggle" data-toggle="dropdown" href="#" role="button">API <span class="caret"></span></a> <ul class="dropdown-menu navbar-menu" id="package-dropdown-menu"> <li><a class="main-nav-link" href="/versions/0.11.0/api/python/index.html">Python</a></li> <li><a class="main-nav-link" href="/versions/0.11.0/api/c++/index.html">C++</a></li> <li><a class="main-nav-link" href="/versions/0.11.0/api/julia/index.html">Julia</a></li> <li><a class="main-nav-link" href="/versions/0.11.0/api/perl/index.html">Perl</a></li> <li><a class="main-nav-link" href="/versions/0.11.0/api/r/index.html">R</a></li> <li><a class="main-nav-link" href="/versions/0.11.0/api/scala/index.html">Scala</a></li> </ul> </span> <span id="dropdown-menu-position-anchor-docs"> <a aria-expanded="true" aria-haspopup="true" class="main-nav-link dropdown-toggle" data-toggle="dropdown" href="#" role="button">Docs <span class="caret"></span></a> <ul class="dropdown-menu navbar-menu" id="package-dropdown-menu-docs"> <li><a class="main-nav-link" href="/versions/0.11.0/how_to/faq.html">FAQ</a></li> <li><a class="main-nav-link" href="/versions/0.11.0/tutorials/index.html">Tutorials</a> <li><a class="main-nav-link" href="https://github.com/apache/incubator-mxnet/tree/v0.11.0/example">Examples</a></li> <li><a class="main-nav-link" href="/versions/0.11.0/architecture/index.html">Architecture</a></li> <li><a class="main-nav-link" href="https://cwiki.apache.org/confluence/display/MXNET/Apache+MXNet+Home">Developer Wiki</a></li> <li><a class="main-nav-link" href="/versions/0.11.0/model_zoo/index.html">Model Zoo</a></li> <li><a class="main-nav-link" href="https://github.com/onnx/onnx-mxnet">ONNX</a></li> </li></ul> </span> <span id="dropdown-menu-position-anchor-community"> <a aria-expanded="true" aria-haspopup="true" class="main-nav-link dropdown-toggle" data-toggle="dropdown" href="#" role="button">Community <span class="caret"></span></a> <ul class="dropdown-menu navbar-menu" id="package-dropdown-menu-community"> <li><a class="main-nav-link" href="http://discuss.mxnet.io">Forum</a></li> <li><a class="main-nav-link" href="https://github.com/apache/incubator-mxnet/tree/v0.11.0">Github</a></li> <li><a class="main-nav-link" href="/versions/0.11.0/community/contribute.html">Contribute</a></li> </ul> </span> <span id="dropdown-menu-position-anchor-version" style="position: relative"><a href="#" class="main-nav-link dropdown-toggle" data-toggle="dropdown" role="button" aria-haspopup="true" aria-expanded="true">0.11.0<span class="caret"></span></a><ul id="package-dropdown-menu" class="dropdown-menu"><li><a href="/">master</a></li><li><a href="/versions/1.7.0/">1.7.0</a></li><li><a href=/versions/1.6.0/>1.6.0</a></li><li><a href=/versions/1.5.0/>1.5.0</a></li><li><a href=/versions/1.4.1/>1.4.1</a></li><li><a href=/versions/1.3.1/>1.3.1</a></li><li><a href=/versions/1.2.1/>1.2.1</a></li><li><a href=/versions/1.1.0/>1.1.0</a></li><li><a href=/versions/1.0.0/>1.0.0</a></li><li><a href=/versions/0.12.1/>0.12.1</a></li><li><a href=/versions/0.11.0/>0.11.0</a></li></ul></span></nav> <script> function getRootPath(){ return "../../" } </script> <div class="burgerIcon dropdown"> <a class="dropdown-toggle" data-toggle="dropdown" href="#" role="button">☰</a> <ul class="dropdown-menu" id="burgerMenu"> <li><a href="/versions/0.11.0/get_started/install.html">Install</a></li> <li><a class="main-nav-link" href="/versions/0.11.0/tutorials/index.html">Tutorials</a></li> <li class="dropdown-submenu dropdown"> <a aria-expanded="true" aria-haspopup="true" class="dropdown-toggle burger-link" data-toggle="dropdown" href="#" tabindex="-1">Gluon</a> <ul class="dropdown-menu navbar-menu" id="package-dropdown-menu"> <li><a class="main-nav-link" href="/versions/0.11.0/tutorials/gluon/gluon.html">About</a></li> <li><a class="main-nav-link" href="http://gluon.mxnet.io">The Straight Dope (Tutorials)</a></li> <li><a class="main-nav-link" href="https://gluon-cv.mxnet.io">GluonCV Toolkit</a></li> <li><a class="main-nav-link" href="https://gluon-nlp.mxnet.io/">GluonNLP Toolkit</a></li> </ul> </li> <li class="dropdown-submenu"> <a aria-expanded="true" aria-haspopup="true" class="dropdown-toggle burger-link" data-toggle="dropdown" href="#" tabindex="-1">API</a> <ul class="dropdown-menu"> <li><a class="main-nav-link" href="/versions/0.11.0/api/python/index.html">Python</a></li> <li><a class="main-nav-link" href="/versions/0.11.0/api/c++/index.html">C++</a></li> <li><a class="main-nav-link" href="/versions/0.11.0/api/julia/index.html">Julia</a></li> <li><a class="main-nav-link" href="/versions/0.11.0/api/perl/index.html">Perl</a></li> <li><a class="main-nav-link" href="/versions/0.11.0/api/r/index.html">R</a></li> <li><a class="main-nav-link" href="/versions/0.11.0/api/scala/index.html">Scala</a></li> </ul> </li> <li class="dropdown-submenu"> <a aria-expanded="true" aria-haspopup="true" class="dropdown-toggle burger-link" data-toggle="dropdown" href="#" tabindex="-1">Docs</a> <ul class="dropdown-menu"> <li><a href="/versions/0.11.0/how_to/faq.html" tabindex="-1">FAQ</a></li> <li><a href="/versions/0.11.0/tutorials/index.html" tabindex="-1">Tutorials</a></li> <li><a href="https://github.com/apache/incubator-mxnet/tree/v0.11.0/example" tabindex="-1">Examples</a></li> <li><a href="/versions/0.11.0/architecture/index.html" tabindex="-1">Architecture</a></li> <li><a href="https://cwiki.apache.org/confluence/display/MXNET/Apache+MXNet+Home" tabindex="-1">Developer Wiki</a></li> <li><a href="/versions/0.11.0/model_zoo/index.html" tabindex="-1">Gluon Model Zoo</a></li> <li><a href="https://github.com/onnx/onnx-mxnet" tabindex="-1">ONNX</a></li> </ul> </li> <li class="dropdown-submenu dropdown"> <a aria-haspopup="true" class="dropdown-toggle burger-link" data-toggle="dropdown" href="#" role="button" tabindex="-1">Community</a> <ul class="dropdown-menu"> <li><a href="http://discuss.mxnet.io" tabindex="-1">Forum</a></li> <li><a href="https://github.com/apache/incubator-mxnet/tree/v0.11.0" tabindex="-1">Github</a></li> <li><a href="/versions/0.11.0/community/contribute.html" tabindex="-1">Contribute</a></li> </ul> </li> <li id="dropdown-menu-position-anchor-version-mobile" class="dropdown-submenu" style="position: relative"><a href="#" tabindex="-1">0.11.0</a><ul class="dropdown-menu"><li><a tabindex="-1" href=/>master</a></li><li><a tabindex="-1" href=/versions/1.6.0/>1.6.0</a></li><li><a tabindex="-1" href=/versions/1.5.0/>1.5.0</a></li><li><a tabindex="-1" href=/versions/1.4.1/>1.4.1</a></li><li><a tabindex="-1" href=/versions/1.3.1/>1.3.1</a></li><li><a tabindex="-1" href=/versions/1.2.1/>1.2.1</a></li><li><a tabindex="-1" href=/versions/1.1.0/>1.1.0</a></li><li><a tabindex="-1" href=/versions/1.0.0/>1.0.0</a></li><li><a tabindex="-1" href=/versions/0.12.1/>0.12.1</a></li><li><a tabindex="-1" href=/versions/0.11.0/>0.11.0</a></li></ul></li></ul> </div> <div class="plusIcon dropdown"> <a class="dropdown-toggle" data-toggle="dropdown" href="#" role="button"><span aria-hidden="true" class="glyphicon glyphicon-plus"></span></a> <ul class="dropdown-menu dropdown-menu-right" id="plusMenu"></ul> </div> <div id="search-input-wrap"> <form action="../../search.html" autocomplete="off" class="" method="get" role="search"> <div class="form-group inner-addon left-addon"> <i class="glyphicon glyphicon-search"></i> <input class="form-control" name="q" placeholder="Search" type="text"/> </div> <input name="check_keywords" type="hidden" value="yes"> <input name="area" type="hidden" value="default"/> </input></form> <div id="search-preview"></div> </div> <div id="searchIcon"> <span aria-hidden="true" class="glyphicon glyphicon-search"></span> </div> <!-- <div id="lang-select-wrap"> --> <!-- <label id="lang-select-label"> --> <!-- <\!-- <i class="fa fa-globe"></i> -\-> --> <!-- <span></span> --> <!-- </label> --> <!-- <select id="lang-select"> --> <!-- <option value="en">Eng</option> --> <!-- <option value="zh">中文</option> --> <!-- </select> --> <!-- </div> --> <!-- <a id="mobile-nav-toggle"> <span class="mobile-nav-toggle-bar"></span> <span class="mobile-nav-toggle-bar"></span> <span class="mobile-nav-toggle-bar"></span> </a> --> </div> </div> </div> <script type="text/javascript"> $('body').css('background', 'white'); </script> <div class="container"> <div class="row"> <div aria-label="main navigation" class="sphinxsidebar leftsidebar" role="navigation"> <div class="sphinxsidebarwrapper"> <ul> <li class="toctree-l1"><a class="reference internal" href="../../api/python/index.html">Python Documents</a></li> <li class="toctree-l1"><a class="reference internal" href="../../api/r/index.html">R Documents</a></li> <li class="toctree-l1"><a class="reference internal" href="../../api/julia/index.html">Julia Documents</a></li> <li class="toctree-l1"><a class="reference internal" href="../../api/c++/index.html">C++ Documents</a></li> <li class="toctree-l1"><a class="reference internal" href="../../api/scala/index.html">Scala Documents</a></li> <li class="toctree-l1"><a class="reference internal" href="../../api/perl/index.html">Perl Documents</a></li> <li class="toctree-l1"><a class="reference internal" href="../../how_to/index.html">HowTo Documents</a></li> <li class="toctree-l1"><a class="reference internal" href="../../architecture/index.html">System Documents</a></li> <li class="toctree-l1"><a class="reference internal" href="../index.html">Tutorials</a></li> </ul> </div> </div> <div class="content"> <div class="page-tracker"></div> <div class="section" id="char-rnn-example"> <span id="char-rnn-example"></span><h1>Char RNN Example<a class="headerlink" href="#char-rnn-example" title="Permalink to this headline">¶</a></h1> <p>This tutorial shows how to use an LSTM model to build a char-level language model, and generate text from it. For demonstration purposes, we use a Shakespearean text. You can find the data on <a class="reference external" href="https://github.com/dmlc/web-data/tree/master/mxnet/tinyshakespeare">GitHub</a>.</p> <div class="section" id="load-the-data"> <span id="load-the-data"></span><h2>Load the Data<a class="headerlink" href="#load-the-data" title="Permalink to this headline">¶</a></h2> <p>Load in the data and preprocess it:</p> <div class="highlight-r"><div class="highlight"><pre><span></span> <span class="nf">require</span><span class="p">(</span><span class="n">mxnet</span><span class="p">)</span> </pre></div> </div> <div class="highlight-default"><div class="highlight"><pre><span></span> <span class="c1">## Loading required package: mxnet</span> </pre></div> </div> <div class="highlight-default"><div class="highlight"><pre><span></span> <span class="c1">## Loading required package: methods</span> </pre></div> </div> <p>Set the basic network parameters:</p> <div class="highlight-r"><div class="highlight"><pre><span></span> <span class="n">batch.size</span> <span class="o">=</span> <span class="m">32</span> <span class="n">seq.len</span> <span class="o">=</span> <span class="m">32</span> <span class="n">num.hidden</span> <span class="o">=</span> <span class="m">16</span> <span class="n">num.embed</span> <span class="o">=</span> <span class="m">16</span> <span class="n">num.lstm.layer</span> <span class="o">=</span> <span class="m">1</span> <span class="n">num.round</span> <span class="o">=</span> <span class="m">1</span> <span class="n">learning.rate</span><span class="o">=</span> <span class="m">0.1</span> <span class="n">wd</span><span class="o">=</span><span class="m">0.00001</span> <span class="n">clip_gradient</span><span class="o">=</span><span class="m">1</span> <span class="n">update.period</span> <span class="o">=</span> <span class="m">1</span> </pre></div> </div> <p>Download the data:</p> <div class="highlight-r"><div class="highlight"><pre><span></span> <span class="n">download.data</span> <span class="o"><-</span> <span class="nf">function</span><span class="p">(</span><span class="n">data_dir</span><span class="p">)</span> <span class="p">{</span> <span class="nf">dir.create</span><span class="p">(</span><span class="n">data_dir</span><span class="p">,</span> <span class="n">showWarnings</span> <span class="o">=</span> <span class="kc">FALSE</span><span class="p">)</span> <span class="nf">if </span><span class="p">(</span><span class="o">!</span><span class="nf">file.exists</span><span class="p">(</span><span class="nf">paste0</span><span class="p">(</span><span class="n">data_dir</span><span class="p">,</span><span class="s">'input.txt'</span><span class="p">)))</span> <span class="p">{</span> <span class="nf">download.file</span><span class="p">(</span><span class="n">url</span><span class="o">=</span><span class="s">'https://raw.githubusercontent.com/dmlc/web-data/master/mxnet/tinyshakespeare/input.txt'</span><span class="p">,</span> <span class="n">destfile</span><span class="o">=</span><span class="nf">paste0</span><span class="p">(</span><span class="n">data_dir</span><span class="p">,</span><span class="s">'input.txt'</span><span class="p">),</span> <span class="n">method</span><span class="o">=</span><span class="s">'wget'</span><span class="p">)</span> <span class="p">}</span> <span class="p">}</span> </pre></div> </div> <p>Make a dictionary from the text:</p> <div class="highlight-r"><div class="highlight"><pre><span></span> <span class="n">make.dict</span> <span class="o"><-</span> <span class="nf">function</span><span class="p">(</span><span class="n">text</span><span class="p">,</span> <span class="n">max.vocab</span><span class="o">=</span><span class="m">10000</span><span class="p">)</span> <span class="p">{</span> <span class="n">text</span> <span class="o"><-</span> <span class="nf">strsplit</span><span class="p">(</span><span class="n">text</span><span class="p">,</span> <span class="s">''</span><span class="p">)</span> <span class="n">dic</span> <span class="o"><-</span> <span class="nf">list</span><span class="p">()</span> <span class="n">idx</span> <span class="o"><-</span> <span class="m">1</span> <span class="nf">for </span><span class="p">(</span><span class="n">c</span> <span class="n">in</span> <span class="n">text[[1]]</span><span class="p">)</span> <span class="p">{</span> <span class="nf">if </span><span class="p">(</span><span class="o">!</span><span class="p">(</span><span class="n">c</span> <span class="o">%in%</span> <span class="nf">names</span><span class="p">(</span><span class="n">dic</span><span class="p">)))</span> <span class="p">{</span> <span class="n">dic[[c]]</span> <span class="o"><-</span> <span class="n">idx</span> <span class="n">idx</span> <span class="o"><-</span> <span class="n">idx</span> <span class="o">+</span> <span class="m">1</span> <span class="p">}</span> <span class="p">}</span> <span class="nf">if </span><span class="p">(</span><span class="nf">length</span><span class="p">(</span><span class="n">dic</span><span class="p">)</span> <span class="o">==</span> <span class="n">max.vocab</span> <span class="o">-</span> <span class="m">1</span><span class="p">)</span> <span class="n">dic[[</span><span class="s">"UNKNOWN"</span><span class="n">]]</span> <span class="o"><-</span> <span class="n">idx</span> <span class="nf">cat</span><span class="p">(</span><span class="nf">paste0</span><span class="p">(</span><span class="s">"Total unique char: "</span><span class="p">,</span> <span class="nf">length</span><span class="p">(</span><span class="n">dic</span><span class="p">),</span> <span class="s">"\n"</span><span class="p">))</span> <span class="nf">return </span><span class="p">(</span><span class="n">dic</span><span class="p">)</span> <span class="p">}</span> </pre></div> </div> <p>Transfer the text into a data feature:</p> <div class="highlight-r"><div class="highlight"><pre><span></span> <span class="n">make.data</span> <span class="o"><-</span> <span class="nf">function</span><span class="p">(</span><span class="n">file.path</span><span class="p">,</span> <span class="n">seq.len</span><span class="o">=</span><span class="m">32</span><span class="p">,</span> <span class="n">max.vocab</span><span class="o">=</span><span class="m">10000</span><span class="p">,</span> <span class="n">dic</span><span class="o">=</span><span class="kc">NULL</span><span class="p">)</span> <span class="p">{</span> <span class="n">fi</span> <span class="o"><-</span> <span class="nf">file</span><span class="p">(</span><span class="n">file.path</span><span class="p">,</span> <span class="s">"r"</span><span class="p">)</span> <span class="n">text</span> <span class="o"><-</span> <span class="nf">paste</span><span class="p">(</span><span class="nf">readLines</span><span class="p">(</span><span class="n">fi</span><span class="p">),</span> <span class="n">collapse</span><span class="o">=</span><span class="s">"\n"</span><span class="p">)</span> <span class="nf">close</span><span class="p">(</span><span class="n">fi</span><span class="p">)</span> <span class="nf">if </span><span class="p">(</span><span class="nf">is.null</span><span class="p">(</span><span class="n">dic</span><span class="p">))</span> <span class="n">dic</span> <span class="o"><-</span> <span class="nf">make.dict</span><span class="p">(</span><span class="n">text</span><span class="p">,</span> <span class="n">max.vocab</span><span class="p">)</span> <span class="n">lookup.table</span> <span class="o"><-</span> <span class="nf">list</span><span class="p">()</span> <span class="nf">for </span><span class="p">(</span><span class="n">c</span> <span class="n">in</span> <span class="nf">names</span><span class="p">(</span><span class="n">dic</span><span class="p">))</span> <span class="p">{</span> <span class="n">idx</span> <span class="o"><-</span> <span class="n">dic[[c]]</span> <span class="n">lookup.table[[idx]]</span> <span class="o"><-</span> <span class="n">c</span> <span class="p">}</span> <span class="n">char.lst</span> <span class="o"><-</span> <span class="nf">strsplit</span><span class="p">(</span><span class="n">text</span><span class="p">,</span> <span class="s">''</span><span class="p">)</span><span class="n">[[1]]</span> <span class="n">num.seq</span> <span class="o"><-</span> <span class="nf">as.integer</span><span class="p">(</span><span class="nf">length</span><span class="p">(</span><span class="n">char.lst</span><span class="p">)</span> <span class="o">/</span> <span class="n">seq.len</span><span class="p">)</span> <span class="n">char.lst</span> <span class="o"><-</span> <span class="n">char.lst[1</span><span class="o">:</span><span class="p">(</span><span class="n">num.seq</span> <span class="o">*</span> <span class="n">seq.len</span><span class="p">)</span><span class="n">]</span> <span class="n">data</span> <span class="o"><-</span> <span class="nf">array</span><span class="p">(</span><span class="m">0</span><span class="p">,</span> <span class="n">dim</span><span class="o">=</span><span class="nf">c</span><span class="p">(</span><span class="n">seq.len</span><span class="p">,</span> <span class="n">num.seq</span><span class="p">))</span> <span class="n">idx</span> <span class="o"><-</span> <span class="m">1</span> <span class="nf">for </span><span class="p">(</span><span class="n">i</span> <span class="n">in</span> <span class="m">1</span><span class="o">:</span><span class="n">num.seq</span><span class="p">)</span> <span class="p">{</span> <span class="nf">for </span><span class="p">(</span><span class="n">j</span> <span class="n">in</span> <span class="m">1</span><span class="o">:</span><span class="n">seq.len</span><span class="p">)</span> <span class="p">{</span> <span class="nf">if </span><span class="p">(</span><span class="n">char.lst[idx]</span> <span class="o">%in%</span> <span class="nf">names</span><span class="p">(</span><span class="n">dic</span><span class="p">))</span> <span class="n">data[j</span><span class="p">,</span> <span class="n">i]</span> <span class="o"><-</span> <span class="n">dic[[</span> <span class="n">char.lst[idx]</span> <span class="n">]]</span><span class="m">-1</span> <span class="n">else</span> <span class="p">{</span> <span class="n">data[j</span><span class="p">,</span> <span class="n">i]</span> <span class="o"><-</span> <span class="n">dic[[</span><span class="s">"UNKNOWN"</span><span class="n">]]</span><span class="m">-1</span> <span class="p">}</span> <span class="n">idx</span> <span class="o"><-</span> <span class="n">idx</span> <span class="o">+</span> <span class="m">1</span> <span class="p">}</span> <span class="p">}</span> <span class="nf">return </span><span class="p">(</span><span class="nf">list</span><span class="p">(</span><span class="n">data</span><span class="o">=</span><span class="n">data</span><span class="p">,</span> <span class="n">dic</span><span class="o">=</span><span class="n">dic</span><span class="p">,</span> <span class="n">lookup.table</span><span class="o">=</span><span class="n">lookup.table</span><span class="p">))</span> <span class="p">}</span> </pre></div> </div> <p>Move the tail text:</p> <div class="highlight-r"><div class="highlight"><pre><span></span> <span class="n">drop.tail</span> <span class="o"><-</span> <span class="nf">function</span><span class="p">(</span><span class="n">X</span><span class="p">,</span> <span class="n">batch.size</span><span class="p">)</span> <span class="p">{</span> <span class="n">shape</span> <span class="o"><-</span> <span class="nf">dim</span><span class="p">(</span><span class="n">X</span><span class="p">)</span> <span class="n">nstep</span> <span class="o"><-</span> <span class="nf">as.integer</span><span class="p">(</span><span class="n">shape[2]</span> <span class="o">/</span> <span class="n">batch.size</span><span class="p">)</span> <span class="nf">return </span><span class="p">(</span><span class="n">X[</span><span class="p">,</span> <span class="m">1</span><span class="o">:</span><span class="p">(</span><span class="n">nstep</span> <span class="o">*</span> <span class="n">batch.size</span><span class="p">)</span><span class="n">]</span><span class="p">)</span> <span class="p">}</span> </pre></div> </div> <p>Get the label of X:</p> <div class="highlight-r"><div class="highlight"><pre><span></span> <span class="n">get.label</span> <span class="o"><-</span> <span class="nf">function</span><span class="p">(</span><span class="n">X</span><span class="p">)</span> <span class="p">{</span> <span class="n">label</span> <span class="o"><-</span> <span class="nf">array</span><span class="p">(</span><span class="m">0</span><span class="p">,</span> <span class="n">dim</span><span class="o">=</span><span class="nf">dim</span><span class="p">(</span><span class="n">X</span><span class="p">))</span> <span class="n">d</span> <span class="o"><-</span> <span class="nf">dim</span><span class="p">(</span><span class="n">X</span><span class="p">)</span><span class="n">[1]</span> <span class="n">w</span> <span class="o"><-</span> <span class="nf">dim</span><span class="p">(</span><span class="n">X</span><span class="p">)</span><span class="n">[2]</span> <span class="nf">for </span><span class="p">(</span><span class="n">i</span> <span class="n">in</span> <span class="m">0</span><span class="o">:</span><span class="p">(</span><span class="n">w</span><span class="m">-1</span><span class="p">))</span> <span class="p">{</span> <span class="nf">for </span><span class="p">(</span><span class="n">j</span> <span class="n">in</span> <span class="m">1</span><span class="o">:</span><span class="n">d</span><span class="p">)</span> <span class="p">{</span> <span class="n">label[i</span><span class="o">*</span><span class="n">d</span><span class="o">+</span><span class="n">j]</span> <span class="o"><-</span> <span class="n">X</span><span class="nf">[</span><span class="p">(</span><span class="n">i</span><span class="o">*</span><span class="n">d</span><span class="o">+</span><span class="n">j</span><span class="p">)</span><span class="o">%%</span><span class="p">(</span><span class="n">w</span><span class="o">*</span><span class="n">d</span><span class="p">)</span><span class="m">+1</span><span class="n">]</span> <span class="p">}</span> <span class="p">}</span> <span class="nf">return </span><span class="p">(</span><span class="n">label</span><span class="p">)</span> <span class="p">}</span> </pre></div> </div> <p>Get the training data and evaluation data:</p> <div class="highlight-r"><div class="highlight"><pre><span></span> <span class="nf">download.data</span><span class="p">(</span><span class="s">"./data/"</span><span class="p">)</span> <span class="n">ret</span> <span class="o"><-</span> <span class="nf">make.data</span><span class="p">(</span><span class="s">"./data/input.txt"</span><span class="p">,</span> <span class="n">seq.len</span><span class="o">=</span><span class="n">seq.len</span><span class="p">)</span> </pre></div> </div> <div class="highlight-default"><div class="highlight"><pre><span></span> <span class="c1">## Total unique char: 65</span> </pre></div> </div> <div class="highlight-r"><div class="highlight"><pre><span></span> <span class="n">X</span> <span class="o"><-</span> <span class="n">ret</span><span class="o">$</span><span class="n">data</span> <span class="n">dic</span> <span class="o"><-</span> <span class="n">ret</span><span class="o">$</span><span class="n">dic</span> <span class="n">lookup.table</span> <span class="o"><-</span> <span class="n">ret</span><span class="o">$</span><span class="n">lookup.table</span> <span class="n">vocab</span> <span class="o"><-</span> <span class="nf">length</span><span class="p">(</span><span class="n">dic</span><span class="p">)</span> <span class="n">shape</span> <span class="o"><-</span> <span class="nf">dim</span><span class="p">(</span><span class="n">X</span><span class="p">)</span> <span class="n">train.val.fraction</span> <span class="o"><-</span> <span class="m">0.9</span> <span class="n">size</span> <span class="o"><-</span> <span class="n">shape[2]</span> <span class="n">X.train.data</span> <span class="o"><-</span> <span class="n">X[</span><span class="p">,</span> <span class="m">1</span><span class="o">:</span><span class="nf">as.integer</span><span class="p">(</span><span class="n">size</span> <span class="o">*</span> <span class="n">train.val.fraction</span><span class="p">)</span><span class="n">]</span> <span class="n">X.val.data</span> <span class="o"><-</span> <span class="n">X[</span><span class="p">,</span> <span class="o">-</span><span class="p">(</span><span class="m">1</span><span class="o">:</span><span class="nf">as.integer</span><span class="p">(</span><span class="n">size</span> <span class="o">*</span> <span class="n">train.val.fraction</span><span class="p">))</span><span class="n">]</span> <span class="n">X.train.data</span> <span class="o"><-</span> <span class="nf">drop.tail</span><span class="p">(</span><span class="n">X.train.data</span><span class="p">,</span> <span class="n">batch.size</span><span class="p">)</span> <span class="n">X.val.data</span> <span class="o"><-</span> <span class="nf">drop.tail</span><span class="p">(</span><span class="n">X.val.data</span><span class="p">,</span> <span class="n">batch.size</span><span class="p">)</span> <span class="n">X.train.label</span> <span class="o"><-</span> <span class="nf">get.label</span><span class="p">(</span><span class="n">X.train.data</span><span class="p">)</span> <span class="n">X.val.label</span> <span class="o"><-</span> <span class="nf">get.label</span><span class="p">(</span><span class="n">X.val.data</span><span class="p">)</span> <span class="n">X.train</span> <span class="o"><-</span> <span class="nf">list</span><span class="p">(</span><span class="n">data</span><span class="o">=</span><span class="n">X.train.data</span><span class="p">,</span> <span class="n">label</span><span class="o">=</span><span class="n">X.train.label</span><span class="p">)</span> <span class="n">X.val</span> <span class="o"><-</span> <span class="nf">list</span><span class="p">(</span><span class="n">data</span><span class="o">=</span><span class="n">X.val.data</span><span class="p">,</span> <span class="n">label</span><span class="o">=</span><span class="n">X.val.label</span><span class="p">)</span> </pre></div> </div> </div> <div class="section" id="train-the-model"> <span id="train-the-model"></span><h2>Train the Model<a class="headerlink" href="#train-the-model" title="Permalink to this headline">¶</a></h2> <p>In <code class="docutils literal"><span class="pre">mxnet</span></code>, we have a function called <code class="docutils literal"><span class="pre">mx.lstm</span></code> so that users can build a general LSTM model:</p> <div class="highlight-r"><div class="highlight"><pre><span></span> <span class="n">model</span> <span class="o"><-</span> <span class="nf">mx.lstm</span><span class="p">(</span><span class="n">X.train</span><span class="p">,</span> <span class="n">X.val</span><span class="p">,</span> <span class="n">ctx</span><span class="o">=</span><span class="nf">mx.cpu</span><span class="p">(),</span> <span class="n">num.round</span><span class="o">=</span><span class="n">num.round</span><span class="p">,</span> <span class="n">update.period</span><span class="o">=</span><span class="n">update.period</span><span class="p">,</span> <span class="n">num.lstm.layer</span><span class="o">=</span><span class="n">num.lstm.layer</span><span class="p">,</span> <span class="n">seq.len</span><span class="o">=</span><span class="n">seq.len</span><span class="p">,</span> <span class="n">num.hidden</span><span class="o">=</span><span class="n">num.hidden</span><span class="p">,</span> <span class="n">num.embed</span><span class="o">=</span><span class="n">num.embed</span><span class="p">,</span> <span class="n">num.label</span><span class="o">=</span><span class="n">vocab</span><span class="p">,</span> <span class="n">batch.size</span><span class="o">=</span><span class="n">batch.size</span><span class="p">,</span> <span class="n">input.size</span><span class="o">=</span><span class="n">vocab</span><span class="p">,</span> <span class="n">initializer</span><span class="o">=</span><span class="nf">mx.init.uniform</span><span class="p">(</span><span class="m">0.1</span><span class="p">),</span> <span class="n">learning.rate</span><span class="o">=</span><span class="n">learning.rate</span><span class="p">,</span> <span class="n">wd</span><span class="o">=</span><span class="n">wd</span><span class="p">,</span> <span class="n">clip_gradient</span><span class="o">=</span><span class="n">clip_gradient</span><span class="p">)</span> </pre></div> </div> <div class="highlight-default"><div class="highlight"><pre><span></span> <span class="c1">## Epoch [31] Train: NLL=3.53787130224343, Perp=34.3936275728271</span> <span class="c1">## Epoch [62] Train: NLL=3.43087958036949, Perp=30.903813186055</span> <span class="c1">## Epoch [93] Train: NLL=3.39771238228587, Perp=29.8956319855751</span> <span class="c1">## Epoch [124] Train: NLL=3.37581711716687, Perp=29.2481732041015</span> <span class="c1">## Epoch [155] Train: NLL=3.34523331338447, Perp=28.3671933405139</span> <span class="c1">## Epoch [186] Train: NLL=3.30756356274787, Perp=27.31848454823</span> <span class="c1">## Epoch [217] Train: NLL=3.25642968403829, Perp=25.9566978956055</span> <span class="c1">## Epoch [248] Train: NLL=3.19825967486207, Perp=24.4898727477925</span> <span class="c1">## Epoch [279] Train: NLL=3.14013971549828, Perp=23.1070950525017</span> <span class="c1">## Epoch [310] Train: NLL=3.08747601837462, Perp=21.9216781782189</span> <span class="c1">## Epoch [341] Train: NLL=3.04015595674863, Perp=20.9085038031042</span> <span class="c1">## Epoch [372] Train: NLL=2.99839339255659, Perp=20.0532932584534</span> <span class="c1">## Epoch [403] Train: NLL=2.95940091012609, Perp=19.2864139984503</span> <span class="c1">## Epoch [434] Train: NLL=2.92603311380224, Perp=18.6534872738302</span> <span class="c1">## Epoch [465] Train: NLL=2.89482756896395, Perp=18.0803835531869</span> <span class="c1">## Epoch [496] Train: NLL=2.86668230478397, Perp=17.5786009078994</span> <span class="c1">## Epoch [527] Train: NLL=2.84089368534943, Perp=17.1310684830416</span> <span class="c1">## Epoch [558] Train: NLL=2.81725862932279, Perp=16.7309220880514</span> <span class="c1">## Epoch [589] Train: NLL=2.79518870141492, Perp=16.3657166956952</span> <span class="c1">## Epoch [620] Train: NLL=2.77445683225304, Perp=16.0299176962855</span> <span class="c1">## Epoch [651] Train: NLL=2.75490970113174, Perp=15.719621374694</span> <span class="c1">## Epoch [682] Train: NLL=2.73697900634351, Perp=15.4402696117257</span> <span class="c1">## Epoch [713] Train: NLL=2.72059739336781, Perp=15.1893935780915</span> <span class="c1">## Epoch [744] Train: NLL=2.70462837571585, Perp=14.948760335793</span> <span class="c1">## Epoch [775] Train: NLL=2.68909904683828, Perp=14.7184093476224</span> <span class="c1">## Epoch [806] Train: NLL=2.67460054451836, Perp=14.5065539595711</span> <span class="c1">## Epoch [837] Train: NLL=2.66078997776751, Perp=14.3075873113043</span> <span class="c1">## Epoch [868] Train: NLL=2.6476781639279, Perp=14.1212134100373</span> <span class="c1">## Epoch [899] Train: NLL=2.63529039846876, Perp=13.9473621677371</span> <span class="c1">## Epoch [930] Train: NLL=2.62367693518974, Perp=13.7863219168709</span> <span class="c1">## Epoch [961] Train: NLL=2.61238282674384, Perp=13.6314936713501</span> <span class="c1">## Iter [1] Train: Time: 10301.6818172932 sec, NLL=2.60536539345356, Perp=13.5361704272949</span> <span class="c1">## Iter [1] Val: NLL=2.26093848746227, Perp=9.59208699731232</span> </pre></div> </div> </div> <div class="section" id="build-inference-from-the-model"> <span id="build-inference-from-the-model"></span><h2>Build Inference from the Model<a class="headerlink" href="#build-inference-from-the-model" title="Permalink to this headline">¶</a></h2> <p>Use the helper function for random sample:</p> <div class="highlight-r"><div class="highlight"><pre><span></span> <span class="n">cdf</span> <span class="o"><-</span> <span class="nf">function</span><span class="p">(</span><span class="n">weights</span><span class="p">)</span> <span class="p">{</span> <span class="n">total</span> <span class="o"><-</span> <span class="nf">sum</span><span class="p">(</span><span class="n">weights</span><span class="p">)</span> <span class="n">result</span> <span class="o"><-</span> <span class="nf">c</span><span class="p">()</span> <span class="n">cumsum</span> <span class="o"><-</span> <span class="m">0</span> <span class="nf">for </span><span class="p">(</span><span class="n">w</span> <span class="n">in</span> <span class="n">weights</span><span class="p">)</span> <span class="p">{</span> <span class="n">cumsum</span> <span class="o"><-</span> <span class="n">cumsum</span><span class="o">+</span><span class="n">w</span> <span class="n">result</span> <span class="o"><-</span> <span class="nf">c</span><span class="p">(</span><span class="n">result</span><span class="p">,</span> <span class="n">cumsum</span> <span class="o">/</span> <span class="n">total</span><span class="p">)</span> <span class="p">}</span> <span class="nf">return </span><span class="p">(</span><span class="n">result</span><span class="p">)</span> <span class="p">}</span> <span class="n">search.val</span> <span class="o"><-</span> <span class="nf">function</span><span class="p">(</span><span class="n">cdf</span><span class="p">,</span> <span class="n">x</span><span class="p">)</span> <span class="p">{</span> <span class="n">l</span> <span class="o"><-</span> <span class="m">1</span> <span class="n">r</span> <span class="o"><-</span> <span class="nf">length</span><span class="p">(</span><span class="n">cdf</span><span class="p">)</span> <span class="nf">while </span><span class="p">(</span><span class="n">l</span> <span class="o"><=</span> <span class="n">r</span><span class="p">)</span> <span class="p">{</span> <span class="n">m</span> <span class="o"><-</span> <span class="nf">as.integer</span><span class="p">((</span><span class="n">l</span><span class="o">+</span><span class="n">r</span><span class="p">)</span><span class="o">/</span><span class="m">2</span><span class="p">)</span> <span class="nf">if </span><span class="p">(</span><span class="n">cdf[m]</span> <span class="o"><</span> <span class="n">x</span><span class="p">)</span> <span class="p">{</span> <span class="n">l</span> <span class="o"><-</span> <span class="n">m</span><span class="m">+1</span> <span class="p">}</span> <span class="n">else</span> <span class="p">{</span> <span class="n">r</span> <span class="o"><-</span> <span class="n">m</span><span class="m">-1</span> <span class="p">}</span> <span class="p">}</span> <span class="nf">return </span><span class="p">(</span><span class="n">l</span><span class="p">)</span> <span class="p">}</span> <span class="n">choice</span> <span class="o"><-</span> <span class="nf">function</span><span class="p">(</span><span class="n">weights</span><span class="p">)</span> <span class="p">{</span> <span class="n">cdf.vals</span> <span class="o"><-</span> <span class="nf">cdf</span><span class="p">(</span><span class="nf">as.array</span><span class="p">(</span><span class="n">weights</span><span class="p">))</span> <span class="n">x</span> <span class="o"><-</span> <span class="nf">runif</span><span class="p">(</span><span class="m">1</span><span class="p">)</span> <span class="n">idx</span> <span class="o"><-</span> <span class="nf">search.val</span><span class="p">(</span><span class="n">cdf.vals</span><span class="p">,</span> <span class="n">x</span><span class="p">)</span> <span class="nf">return </span><span class="p">(</span><span class="n">idx</span><span class="p">)</span> <span class="p">}</span> </pre></div> </div> <p>Use random output or fixed output by choosing the greatest probability:</p> <div class="highlight-r"><div class="highlight"><pre><span></span> <span class="n">make.output</span> <span class="o"><-</span> <span class="nf">function</span><span class="p">(</span><span class="n">prob</span><span class="p">,</span> <span class="n">sample</span><span class="o">=</span><span class="kc">FALSE</span><span class="p">)</span> <span class="p">{</span> <span class="nf">if </span><span class="p">(</span><span class="o">!</span><span class="n">sample</span><span class="p">)</span> <span class="p">{</span> <span class="n">idx</span> <span class="o"><-</span> <span class="nf">which.max</span><span class="p">(</span><span class="nf">as.array</span><span class="p">(</span><span class="n">prob</span><span class="p">))</span> <span class="p">}</span> <span class="n">else</span> <span class="p">{</span> <span class="n">idx</span> <span class="o"><-</span> <span class="nf">choice</span><span class="p">(</span><span class="n">prob</span><span class="p">)</span> <span class="p">}</span> <span class="nf">return </span><span class="p">(</span><span class="n">idx</span><span class="p">)</span> <span class="p">}</span> </pre></div> </div> <p>In <code class="docutils literal"><span class="pre">mxnet</span></code>, we have a function called <code class="docutils literal"><span class="pre">mx.lstm.inference</span></code> so that users can build an inference from an LSTM model, and then use the <code class="docutils literal"><span class="pre">mx.lstm.forward</span></code> function to get forward output from the inference.</p> <p>Build an inference from the model:</p> <div class="highlight-r"><div class="highlight"><pre><span></span> <span class="n">infer.model</span> <span class="o"><-</span> <span class="nf">mx.lstm.inference</span><span class="p">(</span><span class="n">num.lstm.layer</span><span class="o">=</span><span class="n">num.lstm.layer</span><span class="p">,</span> <span class="n">input.size</span><span class="o">=</span><span class="n">vocab</span><span class="p">,</span> <span class="n">num.hidden</span><span class="o">=</span><span class="n">num.hidden</span><span class="p">,</span> <span class="n">num.embed</span><span class="o">=</span><span class="n">num.embed</span><span class="p">,</span> <span class="n">num.label</span><span class="o">=</span><span class="n">vocab</span><span class="p">,</span> <span class="n">arg.params</span><span class="o">=</span><span class="n">model</span><span class="o">$</span><span class="n">arg.params</span><span class="p">,</span> <span class="n">ctx</span><span class="o">=</span><span class="nf">mx.cpu</span><span class="p">())</span> </pre></div> </div> <p>Generate a sequence of 75 characters using the <code class="docutils literal"><span class="pre">mx.lstm.forward</span></code> function:</p> <div class="highlight-r"><div class="highlight"><pre><span></span> <span class="n">start</span> <span class="o"><-</span> <span class="s">'a'</span> <span class="n">seq.len</span> <span class="o"><-</span> <span class="m">75</span> <span class="n">random.sample</span> <span class="o"><-</span> <span class="kc">TRUE</span> <span class="n">last.id</span> <span class="o"><-</span> <span class="n">dic[[start]]</span> <span class="n">out</span> <span class="o"><-</span> <span class="s">"a"</span> <span class="nf">for </span><span class="p">(</span><span class="n">i</span> <span class="nf">in </span><span class="p">(</span><span class="m">1</span><span class="o">:</span><span class="p">(</span><span class="n">seq.len</span><span class="m">-1</span><span class="p">)))</span> <span class="p">{</span> <span class="n">input</span> <span class="o"><-</span> <span class="nf">c</span><span class="p">(</span><span class="n">last.id</span><span class="m">-1</span><span class="p">)</span> <span class="n">ret</span> <span class="o"><-</span> <span class="nf">mx.lstm.forward</span><span class="p">(</span><span class="n">infer.model</span><span class="p">,</span> <span class="n">input</span><span class="p">,</span> <span class="kc">FALSE</span><span class="p">)</span> <span class="n">infer.model</span> <span class="o"><-</span> <span class="n">ret</span><span class="o">$</span><span class="n">model</span> <span class="n">prob</span> <span class="o"><-</span> <span class="n">ret</span><span class="o">$</span><span class="n">prob</span> <span class="n">last.id</span> <span class="o"><-</span> <span class="nf">make.output</span><span class="p">(</span><span class="n">prob</span><span class="p">,</span> <span class="n">random.sample</span><span class="p">)</span> <span class="n">out</span> <span class="o"><-</span> <span class="nf">paste0</span><span class="p">(</span><span class="n">out</span><span class="p">,</span> <span class="n">lookup.table[[last.id]]</span><span class="p">)</span> <span class="p">}</span> <span class="nf">cat </span><span class="p">(</span><span class="nf">paste0</span><span class="p">(</span><span class="n">out</span><span class="p">,</span> <span class="s">"\n"</span><span class="p">))</span> </pre></div> </div> <p>The result:</p> <div class="highlight-default"><div class="highlight"><pre><span></span> <span class="n">ah</span> <span class="ow">not</span> <span class="n">a</span> <span class="n">drobl</span> <span class="n">greens</span> <span class="n">Settled</span> <span class="n">asing</span> <span class="n">lately</span> <span class="n">sistering</span> <span class="n">sounted</span> <span class="n">to</span> <span class="n">their</span> <span class="n">hight</span> </pre></div> </div> </div> <div class="section" id="create-other-rnn-models"> <span id="create-other-rnn-models"></span><h2>Create Other RNN Models<a class="headerlink" href="#create-other-rnn-models" title="Permalink to this headline">¶</a></h2> <p>In <code class="docutils literal"><span class="pre">mxnet</span></code>, other RNN models, like custom RNN and GRU, are also provided:</p> <ul class="simple"> <li>For a custom RNN model, you can replace <code class="docutils literal"><span class="pre">mx.lstm</span></code> with <code class="docutils literal"><span class="pre">mx.rnn</span></code> to train an RNN model. You can replace <code class="docutils literal"><span class="pre">mx.lstm.inference</span></code> and <code class="docutils literal"><span class="pre">mx.lstm.forward</span></code> with <code class="docutils literal"><span class="pre">mx.rnn.inference</span></code> and <code class="docutils literal"><span class="pre">mx.rnn.forward</span></code> to build inference from an RNN model and get the forward result from the inference model.</li> <li>For a GRU model, you can replace <code class="docutils literal"><span class="pre">mx.lstm</span></code> with <code class="docutils literal"><span class="pre">mx.gru</span></code> to train a GRU model. You can replace <code class="docutils literal"><span class="pre">mx.lstm.inference</span></code> and <code class="docutils literal"><span class="pre">mx.lstm.forward</span></code> with <code class="docutils literal"><span class="pre">mx.gru.inference</span></code> and <code class="docutils literal"><span class="pre">mx.gru.forward</span></code> to build inference from a GRU model and get the forward result from the inference model.</li> </ul> </div> <div class="section" id="next-steps"> <span id="next-steps"></span><h2>Next Steps<a class="headerlink" href="#next-steps" title="Permalink to this headline">¶</a></h2> <div class="toctree-wrapper compound"> <ul> <li class="toctree-l1"><a class="reference external" href="/versions/0.11.0/tutorials/index.html">MXNet tutorials index</a></li> </ul> </div> </div> </div> </div> </div> <div aria-label="main navigation" class="sphinxsidebar rightsidebar" role="navigation"> <div class="sphinxsidebarwrapper"> <h3><a href="../../index.html">Table Of Contents</a></h3> <ul> <li><a class="reference internal" href="#">Char RNN Example</a><ul> <li><a class="reference internal" href="#load-the-data">Load the Data</a></li> <li><a class="reference internal" href="#train-the-model">Train the Model</a></li> <li><a class="reference internal" href="#build-inference-from-the-model">Build Inference from the Model</a></li> <li><a class="reference internal" href="#create-other-rnn-models">Create Other RNN Models</a></li> <li><a class="reference internal" href="#next-steps">Next Steps</a></li> </ul> </li> </ul> </div> </div> </div><div class="footer"> <div class="section-disclaimer"> <div class="container"> <div> <img height="60" src="https://raw.githubusercontent.com/dmlc/web-data/master/mxnet/image/apache_incubator_logo.png"/> <p> Apache MXNet is an effort undergoing incubation at The Apache Software Foundation (ASF), <strong>sponsored by the <i>Apache Incubator</i></strong>. Incubation is required of all newly accepted projects until a further review indicates that the infrastructure, communications, and decision making process have stabilized in a manner consistent with other successful ASF projects. While incubation status is not necessarily a reflection of the completeness or stability of the code, it does indicate that the project has yet to be fully endorsed by the ASF. </p> <p> "Copyright © 2017-2018, The Apache Software Foundation Apache MXNet, MXNet, Apache, the Apache feather, and the Apache MXNet project logo are either registered trademarks or trademarks of the Apache Software Foundation." </p> </div> </div> </div> </div> <!-- pagename != index --> </div> <script crossorigin="anonymous" integrity="sha384-0mSbJDEHialfmuBBQP6A4Qrprq5OVfW37PRR3j5ELqxss1yVqOtnepnHVP9aJ7xS" src="https://maxcdn.bootstrapcdn.com/bootstrap/3.3.6/js/bootstrap.min.js"></script> <script src="../../_static/js/sidebar.js" type="text/javascript"></script> <script src="../../_static/js/search.js" type="text/javascript"></script> <script src="../../_static/js/navbar.js" type="text/javascript"></script> <script src="../../_static/js/clipboard.min.js" type="text/javascript"></script> <script src="../../_static/js/copycode.js" type="text/javascript"></script> <script src="../../_static/js/page.js" type="text/javascript"></script> <script src="../../_static/js/docversion.js" type="text/javascript"></script> <script type="text/javascript"> $('body').ready(function () { $('body').css('visibility', 'visible'); }); </script> </body> </html>