private int hash()

in java/core/src/java/org/apache/orc/util/CuckooSetBytes.java [287:463]


  private int hash(byte[] key, int start, int nbytes, int initval) {
    int length = nbytes;
    long a, b, c;       // We use longs because we don't have unsigned ints
    a = b = c = (0x00000000deadbeefL + length + initval) & INT_MASK;
    int offset = start;
    for (; length > 12; offset += 12, length -= 12) {
      a = (a + (key[offset] & BYTE_MASK)) & INT_MASK;
      a = (a + (((key[offset + 1]  & BYTE_MASK) <<  8) & INT_MASK)) & INT_MASK;
      a = (a + (((key[offset + 2]  & BYTE_MASK) << 16) & INT_MASK)) & INT_MASK;
      a = (a + (((key[offset + 3]  & BYTE_MASK) << 24) & INT_MASK)) & INT_MASK;
      b = (b + (key[offset + 4]    & BYTE_MASK)) & INT_MASK;
      b = (b + (((key[offset + 5]  & BYTE_MASK) <<  8) & INT_MASK)) & INT_MASK;
      b = (b + (((key[offset + 6]  & BYTE_MASK) << 16) & INT_MASK)) & INT_MASK;
      b = (b + (((key[offset + 7]  & BYTE_MASK) << 24) & INT_MASK)) & INT_MASK;
      c = (c + (key[offset + 8]    & BYTE_MASK)) & INT_MASK;
      c = (c + (((key[offset + 9]  & BYTE_MASK) <<  8) & INT_MASK)) & INT_MASK;
      c = (c + (((key[offset + 10] & BYTE_MASK) << 16) & INT_MASK)) & INT_MASK;
      c = (c + (((key[offset + 11] & BYTE_MASK) << 24) & INT_MASK)) & INT_MASK;

      /*
       * mix -- mix 3 32-bit values reversibly.
       * This is reversible, so any information in (a,b,c) before mix() is
       * still in (a,b,c) after mix().
       *
       * If four pairs of (a,b,c) inputs are run through mix(), or through
       * mix() in reverse, there are at least 32 bits of the output that
       * are sometimes the same for one pair and different for another pair.
       *
       * This was tested for:
       * - pairs that differed by one bit, by two bits, in any combination
       *   of top bits of (a,b,c), or in any combination of bottom bits of
       *   (a,b,c).
       * - "differ" is defined as +, -, ^, or ~^.  For + and -, I transformed
       *   the output delta to a Gray code (a^(a>>1)) so a string of 1's (as
       *    is commonly produced by subtraction) look like a single 1-bit
       *    difference.
       * - the base values were pseudorandom, all zero but one bit set, or
       *   all zero plus a counter that starts at zero.
       *
       * Some k values for my "a-=c; a^=rot(c,k); c+=b;" arrangement that
       * satisfy this are
       *     4  6  8 16 19  4
       *     9 15  3 18 27 15
       *    14  9  3  7 17  3
       * Well, "9 15 3 18 27 15" didn't quite get 32 bits diffing for
       * "differ" defined as + with a one-bit base and a two-bit delta.  I
       * used http://burtleburtle.net/bob/hash/avalanche.html to choose
       * the operations, constants, and arrangements of the variables.
       *
       * This does not achieve avalanche.  There are input bits of (a,b,c)
       * that fail to affect some output bits of (a,b,c), especially of a.
       * The most thoroughly mixed value is c, but it doesn't really even
       * achieve avalanche in c.
       *
       * This allows some parallelism.  Read-after-writes are good at doubling
       * the number of bits affected, so the goal of mixing pulls in the
       * opposite direction as the goal of parallelism.  I did what I could.
       * Rotates seem to cost as much as shifts on every machine I could lay
       * my hands on, and rotates are much kinder to the top and bottom bits,
       * so I used rotates.
       *
       * #define mix(a,b,c) \
       * { \
       *   a -= c;  a ^= rot(c, 4);  c += b; \
       *   b -= a;  b ^= rot(a, 6);  a += c; \
       *   c -= b;  c ^= rot(b, 8);  b += a; \
       *   a -= c;  a ^= rot(c,16);  c += b; \
       *   b -= a;  b ^= rot(a,19);  a += c; \
       *   c -= b;  c ^= rot(b, 4);  b += a; \
       * }
       *
       * mix(a,b,c);
       */
      a = (a - c) & INT_MASK;
      a ^= rot(c, 4);
      c = (c + b) & INT_MASK;
      b = (b - a) & INT_MASK;
      b ^= rot(a, 6);
      a = (a + c) & INT_MASK;
      c = (c - b) & INT_MASK;
      c ^= rot(b, 8);
      b = (b + a) & INT_MASK;
      a = (a - c) & INT_MASK;
      a ^= rot(c,16);
      c = (c + b) & INT_MASK;
      b = (b - a) & INT_MASK;
      b ^= rot(a,19);
      a = (a + c) & INT_MASK;
      c = (c - b) & INT_MASK;
      c ^= rot(b, 4);
      b = (b + a) & INT_MASK;
    }

    //-------------------------------- last block: affect all 32 bits of (c)
    switch (length) {                   // all the case statements fall through
      case 12:
        c = (c + (((key[offset + 11] & BYTE_MASK) << 24) & INT_MASK)) & INT_MASK;
      case 11:
        c = (c + (((key[offset + 10] & BYTE_MASK) << 16) & INT_MASK)) & INT_MASK;
      case 10:
        c = (c + (((key[offset + 9]  & BYTE_MASK) <<  8) & INT_MASK)) & INT_MASK;
      case  9:
        c = (c + (key[offset + 8]    & BYTE_MASK)) & INT_MASK;
      case  8:
        b = (b + (((key[offset + 7]  & BYTE_MASK) << 24) & INT_MASK)) & INT_MASK;
      case  7:
        b = (b + (((key[offset + 6]  & BYTE_MASK) << 16) & INT_MASK)) & INT_MASK;
      case  6:
        b = (b + (((key[offset + 5]  & BYTE_MASK) <<  8) & INT_MASK)) & INT_MASK;
      case  5:
        b = (b + (key[offset + 4]    & BYTE_MASK)) & INT_MASK;
      case  4:
        a = (a + (((key[offset + 3]  & BYTE_MASK) << 24) & INT_MASK)) & INT_MASK;
      case  3:
        a = (a + (((key[offset + 2]  & BYTE_MASK) << 16) & INT_MASK)) & INT_MASK;
      case  2:
        a = (a + (((key[offset + 1]  & BYTE_MASK) <<  8) & INT_MASK)) & INT_MASK;
      case  1:
        a = (a + (key[offset] & BYTE_MASK)) & INT_MASK;
        break;
      case  0:
        return (int)(c & INT_MASK);
    }
    /*
     * final -- final mixing of 3 32-bit values (a,b,c) into c
     *
     * Pairs of (a,b,c) values differing in only a few bits will usually
     * produce values of c that look totally different.  This was tested for
     * - pairs that differed by one bit, by two bits, in any combination
     *   of top bits of (a,b,c), or in any combination of bottom bits of
     *   (a,b,c).
     *
     * - "differ" is defined as +, -, ^, or ~^.  For + and -, I transformed
     *   the output delta to a Gray code (a^(a>>1)) so a string of 1's (as
     *   is commonly produced by subtraction) look like a single 1-bit
     *   difference.
     *
     * - the base values were pseudorandom, all zero but one bit set, or
     *   all zero plus a counter that starts at zero.
     *
     * These constants passed:
     *   14 11 25 16 4 14 24
     *   12 14 25 16 4 14 24
     * and these came close:
     *    4  8 15 26 3 22 24
     *   10  8 15 26 3 22 24
     *   11  8 15 26 3 22 24
     *
     * #define final(a,b,c) \
     * {
     *   c ^= b; c -= rot(b,14); \
     *   a ^= c; a -= rot(c,11); \
     *   b ^= a; b -= rot(a,25); \
     *   c ^= b; c -= rot(b,16); \
     *   a ^= c; a -= rot(c,4);  \
     *   b ^= a; b -= rot(a,14); \
     *   c ^= b; c -= rot(b,24); \
     * }
     *
     */
    c ^= b;
    c = (c - rot(b,14)) & INT_MASK;
    a ^= c;
    a = (a - rot(c,11)) & INT_MASK;
    b ^= a;
    b = (b - rot(a,25)) & INT_MASK;
    c ^= b;
    c = (c - rot(b,16)) & INT_MASK;
    a ^= c;
    a = (a - rot(c,4))  & INT_MASK;
    b ^= a;
    b = (b - rot(a,14)) & INT_MASK;
    c ^= b;
    c = (c - rot(b,24)) & INT_MASK;

    return (int)(c & INT_MASK);
  }