parquet_flask/io_logic/raw_query.py (77 lines of code) (raw):
# Licensed to the Apache Software Foundation (ASF) under one or more
# contributor license agreements. See the NOTICE file distributed with
# this work for additional information regarding copyright ownership.
# The ASF licenses this file to You under the Apache License, Version 2.0
# (the "License"); you may not use this file except in compliance with
# the License. You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import logging
from datetime import datetime
from pyspark.sql.dataframe import DataFrame
from parquet_flask.io_logic.cdms_constants import CDMSConstants
from parquet_flask.utils.config import Config
LOGGER = logging.getLogger(__name__)
class RawQueryProps:
def __init__(self):
self.__start_at = 0
self.__size = 0
self.__columns = []
@property
def start_at(self):
return self.__start_at
@start_at.setter
def start_at(self, val):
"""
:param val:
:return: None
"""
self.__start_at = val
return
@property
def size(self):
return self.__size
@size.setter
def size(self, val):
"""
:param val:
:return: None
"""
self.__size = val
return
@property
def columns(self):
return self.__columns
@columns.setter
def columns(self, val):
"""
:param val:
:return: None
"""
self.__columns = val
return
class RawQuery:
def __init__(self, props: RawQueryProps=RawQueryProps()):
self.__props = props
config = Config()
self.__app_name = config.get_spark_app_name()
self.__master_spark = config.get_value('master_spark_url')
self.__parquet_name = config.get_value('parquet_file_name')
def __retrieve_spark(self):
from parquet_flask.io_logic.retrieve_spark_session import RetrieveSparkSession
spark = RetrieveSparkSession().retrieve_spark_session(self.__app_name, self.__master_spark)
return spark
def search(self, conditions: str, spark_session=None):
"""
:param conditions: str - SQL conditions string
:param spark_session:
:return:
"""
# LOGGER.debug(f'self.__sql_query(spark_session): {self.__sql_query(spark_session)}')
query_begin_time = datetime.now()
LOGGER.debug(f'query begins at {query_begin_time}')
spark = self.__retrieve_spark() if spark_session is None else spark_session
created_spark_session_time = datetime.now()
LOGGER.debug(f'spark session created at {created_spark_session_time}. duration: {created_spark_session_time - query_begin_time}')
read_df: DataFrame = spark.read.parquet(self.__parquet_name)
read_df_time = datetime.now()
LOGGER.debug(f'parquet read created at {read_df_time}. duration: {read_df_time - created_spark_session_time}')
query_result = read_df.where(conditions)
query_result = query_result.coalesce(1)
query_time = datetime.now()
LOGGER.debug(f'parquet read filtered at {query_time}. duration: {query_time - read_df_time}')
LOGGER.debug(f'total duration: {query_time - query_begin_time}')
total_result = int(query_result.coalesce(1).count())
# total_result = 1000 # faking this for now. TODO revert it.
LOGGER.debug(f'total calc count duration: {datetime.now() - query_time}')
if self.__props.size < 1:
LOGGER.debug(f'returning only the size: {total_result}')
return {
'total': total_result,
'results': [],
}
query_time = datetime.now()
# result = query_result.withColumn('_id', F.monotonically_increasing_id())
removing_cols = [CDMSConstants.time_obj_col, CDMSConstants.year_col, CDMSConstants.month_col]
if len(self.__props.columns) > 0:
result = query_result.select(self.__props.columns)
LOGGER.debug(f'returning size : {total_result}')
result = query_result.limit(self.__props.start_at + self.__props.size).drop(*removing_cols).tail(self.__props.size)
query_result.unpersist()
LOGGER.debug(f'total retrieval duration: {datetime.now() - query_time}')
# spark.stop()
return {
'total': total_result,
'results': [k.asDict() for k in result],
}