def _generate_tile()

in granule_ingester/granule_ingester/processors/reading_processors/GridReadingProcessor.py [0:0]


    def _generate_tile(self, ds: xr.Dataset, dimensions_to_slices: Dict[str, slice], input_tile):
        data_variable = self.variable[0] if isinstance(self.variable, list) else self.variable
        new_tile = nexusproto.GridTile()

        expand_axes = []

        lat_subset = ds[self.latitude][type(self)._slices_for_variable(ds[self.latitude], dimensions_to_slices)]
        lon_subset = ds[self.longitude][type(self)._slices_for_variable(ds[self.longitude], dimensions_to_slices)]

        lat_subset = np.squeeze(lat_subset)
        if lat_subset.shape == ():
            lat_subset = np.expand_dims(lat_subset, 0)
            expand_axes.append(0)

        lon_subset = np.squeeze(lon_subset)
        if lon_subset.shape == ():
            lon_subset = np.expand_dims(lon_subset, 0)
            expand_axes.append(1)

        lat_subset = np.ma.filled(lat_subset, np.NaN)
        lon_subset = np.ma.filled(lon_subset, np.NaN)

        data_subset = ds[data_variable][type(self)._slices_for_variable(ds[data_variable],
                                                                        dimensions_to_slices)].data
        data_subset = np.array(np.squeeze(data_subset))

        if len(expand_axes) > 0:
            data_subset = np.expand_dims(data_subset, tuple(expand_axes))


        if self.height:
            depth_dim, depth_slice = list(type(self)._slices_for_variable(ds[self.height],
                                                                          dimensions_to_slices).items())[0]
            depth_slice_len = depth_slice.stop - depth_slice.start
            if depth_slice_len > 1:
                raise RuntimeError(
                    "Depth slices must have length 1, but '{dim}' has length {dim_len}.".format(dim=depth_dim,
                                                                                                dim_len=depth_slice_len))
            if self.invert_z:
                ds[self.height] = ds[self.height] * -1

            new_tile.min_elevation = ds[self.height][depth_slice].item()
            new_tile.max_elevation = ds[self.height][depth_slice].item()

            new_tile.elevation.CopyFrom(to_shaped_array(
                np.full(
                    data_subset.shape,
                    ds[self.height][depth_slice].item()
                )
            ))

        if self.time:
            time_slice = dimensions_to_slices[self.time]
            time_slice_len = time_slice.stop - time_slice.start
            if time_slice_len > 1:
                raise RuntimeError(
                    "Time slices must have length 1, but '{dim}' has length {dim_len}.".format(dim=self.time,
                                                                                               dim_len=time_slice_len))
            if isinstance(ds[self.time][time_slice.start].item(), cftime.datetime):
                ds[self.time] = ds.indexes[self.time].to_datetimeindex()
            new_tile.time = int(ds[self.time][time_slice.start].item() / 1e9)

        new_tile.latitude.CopyFrom(to_shaped_array(lat_subset))
        new_tile.longitude.CopyFrom(to_shaped_array(lon_subset))
        new_tile.variable_data.CopyFrom(to_shaped_array(data_subset))

        input_tile.tile.grid_tile.CopyFrom(new_tile)
        return input_tile