in granule_ingester/granule_ingester/processors/reading_processors/TimeSeriesReadingProcessor.py [0:0]
def _generate_tile(self, ds: xr.Dataset, dimensions_to_slices: Dict[str, slice], input_tile):
data_variable = self.variable[0] if isinstance(self.variable, list) else self.variable
new_tile = nexusproto.TimeSeriesTile()
lat_subset = ds[self.latitude][type(self)._slices_for_variable(ds[self.latitude], dimensions_to_slices)]
lon_subset = ds[self.longitude][type(self)._slices_for_variable(ds[self.longitude], dimensions_to_slices)]
lat_subset = np.ma.filled(lat_subset, np.NaN)
lon_subset = np.ma.filled(lon_subset, np.NaN)
data_subset = ds[data_variable][type(self)._slices_for_variable(ds[data_variable],
dimensions_to_slices)]
data_subset = np.ma.filled(data_subset, np.NaN)
if self.depth:
depth_dim, depth_slice = list(type(self)._slices_for_variable(ds[self.depth],
dimensions_to_slices).items())[0]
depth_slice_len = depth_slice.stop - depth_slice.start
if depth_slice_len > 1:
raise RuntimeError(
"Depth slices must have length 1, but '{dim}' has length {dim_len}.".format(dim=depth_dim,
dim_len=depth_slice_len))
new_tile.depth = ds[self.depth][depth_slice].item()
time_subset = ds[self.time][type(self)._slices_for_variable(ds[self.time], dimensions_to_slices)]
time_subset = np.ma.filled(type(self)._convert_to_timestamp(time_subset), np.NaN)
new_tile.latitude.CopyFrom(to_shaped_array(lat_subset))
new_tile.longitude.CopyFrom(to_shaped_array(lon_subset))
new_tile.variable_data.CopyFrom(to_shaped_array(data_subset))
new_tile.time.CopyFrom(to_shaped_array(time_subset))
input_tile.tile.time_series_tile.CopyFrom(new_tile)
return input_tile