analysis/webservice/algorithms/HofMoeller.py (274 lines of code) (raw):

# Licensed to the Apache Software Foundation (ASF) under one or more # contributor license agreements. See the NOTICE file distributed with # this work for additional information regarding copyright ownership. # The ASF licenses this file to You under the Apache License, Version 2.0 # (the "License"); you may not use this file except in compliance with # the License. You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import itertools import logging import traceback from io import StringIO from datetime import datetime from multiprocessing.dummy import Pool, Manager import matplotlib import matplotlib.pyplot as plt import mpld3 import numpy as np from matplotlib import cm from matplotlib.ticker import FuncFormatter from webservice.NexusHandler import nexus_handler, DEFAULT_PARAMETERS_SPEC from webservice.algorithms.NexusCalcHandler import NexusCalcHandler from webservice.webmodel import NexusProcessingException, NexusResults SENTINEL = 'STOP' LATITUDE = 0 LONGITUDE = 1 if not matplotlib.get_backend(): matplotlib.use('Agg') logger = logging.getLogger(__name__) class LongitudeHofMoellerCalculator(object): def longitude_time_hofmoeller_stats(self, tile, index): stat = { 'sequence': index, 'time': np.ma.min(tile.times), 'lons': [] } points = list(tile.nexus_point_generator()) data = sorted(points, key=lambda p: p.longitude) points_by_lon = itertools.groupby(data, key=lambda p: p.longitude) for lon, points_at_lon in points_by_lon: values_at_lon = np.array([point.data_vals for point in points_at_lon]) stat['lons'].append({ 'longitude': float(lon), 'cnt': len(values_at_lon), 'avg': np.mean(values_at_lon).item(), 'max': np.max(values_at_lon).item(), 'min': np.min(values_at_lon).item(), 'std': np.std(values_at_lon).item() }) return stat class LatitudeHofMoellerCalculator(object): def latitude_time_hofmoeller_stats(self, tile, index): stat = { 'sequence': index, 'time': np.ma.min(tile.times), 'lats': [] } points = list(tile.nexus_point_generator()) data = sorted(points, key=lambda p: p.latitude) points_by_lat = itertools.groupby(data, key=lambda p: p.latitude) for lat, points_at_lat in points_by_lat: values_at_lat = np.array([point.data_vals for point in points_at_lat]) stat['lats'].append({ 'latitude': float(lat), 'cnt': len(values_at_lat), 'avg': np.mean(values_at_lat).item(), 'max': np.max(values_at_lat).item(), 'min': np.min(values_at_lat).item(), 'std': np.std(values_at_lat).item() }) return stat class BaseHoffMoellerCalcHandlerImpl(NexusCalcHandler): def applyDeseasonToHofMoellerByField(self, results, pivot="lats", field="avg", append=True): shape = (len(results), len(results[0][pivot])) if shape[0] <= 12: return results for a in range(0, 12): values = [] for b in range(a, len(results), 12): values.append(np.average([l[field] for l in results[b][pivot]])) avg = np.average(values) for b in range(a, len(results), 12): for l in results[b][pivot]: l["%sSeasonal" % field] = l[field] - avg return results def applyDeseasonToHofMoeller(self, results, pivot="lats", append=True): results = self.applyDeseasonToHofMoellerByField(results, pivot, field="avg", append=append) results = self.applyDeseasonToHofMoellerByField(results, pivot, field="min", append=append) results = self.applyDeseasonToHofMoellerByField(results, pivot, field="max", append=append) return results @nexus_handler class LatitudeTimeHoffMoellerHandlerImpl(BaseHoffMoellerCalcHandlerImpl): name = "Latitude/Time HofMoeller" path = "/latitudeTimeHofMoeller" description = "Computes a latitude/time HofMoeller plot given an arbitrary geographical area and time range" params = DEFAULT_PARAMETERS_SPEC singleton = True def __init__(self): BaseHoffMoellerCalcHandlerImpl.__init__(self) def calc(self, computeOptions, **args): tiles = self._get_tile_service().get_tiles_bounded_by_box(computeOptions.get_min_lat(), computeOptions.get_max_lat(), computeOptions.get_min_lon(), computeOptions.get_max_lon(), computeOptions.get_dataset()[0], computeOptions.get_start_time(), computeOptions.get_end_time()) if len(tiles) == 0: raise NexusProcessingException.NoDataException(reason="No data found for selected timeframe") maxprocesses = int(self.algorithm_config.get("multiprocessing", "maxprocesses")) results = [] if maxprocesses == 1: calculator = LatitudeHofMoellerCalculator() for x, tile in enumerate(tiles): result = calculator.latitude_time_hofmoeller_stats(tile, x) results.append(result) else: manager = Manager() work_queue = manager.Queue() done_queue = manager.Queue() for x, tile in enumerate(tiles): work_queue.put( ('latitude_time_hofmoeller_stats', tile, x)) [work_queue.put(SENTINEL) for _ in range(0, maxprocesses)] # Start new processes to handle the work pool = Pool(maxprocesses) [pool.apply_async(pool_worker, (LATITUDE, work_queue, done_queue)) for _ in range(0, maxprocesses)] pool.close() # Collect the results for x, tile in enumerate(tiles): result = done_queue.get() try: error_str = result['error'] logger.error(error_str) raise NexusProcessingException(reason="Error calculating latitude_time_hofmoeller_stats.") except KeyError: pass results.append(result) pool.terminate() manager.shutdown() results = sorted(results, key=lambda entry: entry["time"]) results = self.applyDeseasonToHofMoeller(results) result = HoffMoellerResults(results=results, computeOptions=computeOptions, type=HoffMoellerResults.LATITUDE) return result @nexus_handler class LongitudeTimeHoffMoellerHandlerImpl(BaseHoffMoellerCalcHandlerImpl): name = "Longitude/Time HofMoeller" path = "/longitudeTimeHofMoeller" description = "Computes a longitude/time HofMoeller plot given an arbitrary geographical area and time range" params = DEFAULT_PARAMETERS_SPEC singleton = True def __init__(self): BaseHoffMoellerCalcHandlerImpl.__init__(self) def calc(self, computeOptions, **args): tiles = self._get_tile_service().get_tiles_bounded_by_box(computeOptions.get_min_lat(), computeOptions.get_max_lat(), computeOptions.get_min_lon(), computeOptions.get_max_lon(), computeOptions.get_dataset()[0], computeOptions.get_start_time(), computeOptions.get_end_time()) if len(tiles) == 0: raise NexusProcessingException.NoDataException(reason="No data found for selected timeframe") maxprocesses = int(self.algorithm_config.get("multiprocessing", "maxprocesses")) results = [] if maxprocesses == 1: calculator = LongitudeHofMoellerCalculator() for x, tile in enumerate(tiles): result = calculator.longitude_time_hofmoeller_stats(tile, x) results.append(result) else: manager = Manager() work_queue = manager.Queue() done_queue = manager.Queue() for x, tile in enumerate(tiles): work_queue.put( ('longitude_time_hofmoeller_stats', tile, x)) [work_queue.put(SENTINEL) for _ in range(0, maxprocesses)] # Start new processes to handle the work pool = Pool(maxprocesses) [pool.apply_async(pool_worker, (LONGITUDE, work_queue, done_queue)) for _ in range(0, maxprocesses)] pool.close() # Collect the results for x, tile in enumerate(tiles): result = done_queue.get() try: error_str = result['error'] logger.error(error_str) raise NexusProcessingException(reason="Error calculating longitude_time_hofmoeller_stats.") except KeyError: pass results.append(result) pool.terminate() manager.shutdown() results = sorted(results, key=lambda entry: entry["time"]) results = self.applyDeseasonToHofMoeller(results, pivot="lons") result = HoffMoellerResults(results=results, computeOptions=computeOptions, type=HoffMoellerResults.LONGITUDE) return result class HoffMoellerResults(NexusResults): LATITUDE = 0 LONGITUDE = 1 def __init__(self, results=None, meta=None, stats=None, computeOptions=None, **args): NexusResults.__init__(self, results=results, meta=meta, stats=stats, computeOptions=computeOptions) self.__type = args['type'] def createHoffmueller(self, data, coordSeries, timeSeries, coordName, title, interpolate='nearest'): cmap = cm.coolwarm # ls = LightSource(315, 45) # rgb = ls.shade(data, cmap) fig, ax = plt.subplots() fig.set_size_inches(11.0, 8.5) cax = ax.imshow(data, interpolation=interpolate, cmap=cmap) def yFormatter(y, pos): if y < len(coordSeries): return "%s $^\circ$" % (int(coordSeries[int(y)] * 100.0) / 100.) else: return "" def xFormatter(x, pos): if x < len(timeSeries): return timeSeries[int(x)].strftime('%b %Y') else: return "" ax.xaxis.set_major_formatter(FuncFormatter(xFormatter)) ax.yaxis.set_major_formatter(FuncFormatter(yFormatter)) ax.set_title(title) ax.set_ylabel(coordName) ax.set_xlabel('Date') fig.colorbar(cax) fig.autofmt_xdate() labels = ['point {0}'.format(i + 1) for i in range(len(data))] # plugins.connect(fig, plugins.MousePosition(fontsize=14)) tooltip = mpld3.plugins.PointLabelTooltip(cax, labels=labels) sio = StringIO() plt.savefig(sio, format='png') return sio.getvalue() def createLongitudeHoffmueller(self, res, meta): lonSeries = [m['longitude'] for m in res[0]['lons']] timeSeries = [datetime.fromtimestamp(m['time'] / 1000) for m in res] data = np.zeros((len(lonSeries), len(timeSeries))) plotSeries = self.computeOptions().get_plot_series(default="avg") if self.computeOptions is not None else None if plotSeries is None: plotSeries = "avg" for t in range(0, len(timeSeries)): timeSet = res[t] for l in range(0, len(lonSeries)): latSet = timeSet['lons'][l] value = latSet[plotSeries] data[len(lonSeries) - l - 1][t] = value title = meta['title'] source = meta['source'] dateRange = "%s - %s" % (timeSeries[0].strftime('%b %Y'), timeSeries[-1].strftime('%b %Y')) return self.createHoffmueller(data, lonSeries, timeSeries, "Longitude", "%s\n%s\n%s" % (title, source, dateRange), interpolate='nearest') def createLatitudeHoffmueller(self, res, meta): latSeries = [m['latitude'] for m in res[0]['lats']] timeSeries = [datetime.fromtimestamp(m['time'] / 1000) for m in res] data = np.zeros((len(latSeries), len(timeSeries))) plotSeries = self.computeOptions().get_plot_series(default="avg") if self.computeOptions is not None else None if plotSeries is None: plotSeries = "avg" for t in range(0, len(timeSeries)): timeSet = res[t] for l in range(0, len(latSeries)): latSet = timeSet['lats'][l] value = latSet[plotSeries] data[len(latSeries) - l - 1][t] = value title = meta['title'] source = meta['source'] dateRange = "%s - %s" % (timeSeries[0].strftime('%b %Y'), timeSeries[-1].strftime('%b %Y')) return self.createHoffmueller(data, latSeries, timeSeries, "Latitude", title="%s\n%s\n%s" % (title, source, dateRange), interpolate='nearest') def toImage(self): res = self.results() meta = self.meta() if self.__type == HoffMoellerResults.LATITUDE: return self.createLatitudeHoffmueller(res, meta) elif self.__type == HoffMoellerResults.LONGITUDE: return self.createLongitudeHoffmueller(res, meta) else: raise Exception("Unsupported HoffMoeller Plot Type") def pool_worker(type, work_queue, done_queue): try: if type == LATITUDE: calculator = LatitudeHofMoellerCalculator() elif type == LONGITUDE: calculator = LongitudeHofMoellerCalculator() for work in iter(work_queue.get, SENTINEL): scifunction = work[0] args = work[1:] result = calculator.__getattribute__(scifunction)(*args) done_queue.put(result) except Exception as e: e_str = traceback.format_exc(e) done_queue.put({'error': e_str})