weekly/update/2018/04/23/recommendation-algorithms.html (80 lines of code) (raw):

<!DOCTYPE html> <html lang="en"> <head> <meta charset="utf-8" /> <meta http-equiv="X-UA-Compatible" content="IE=edge" /> <meta name="viewport" content="width=device-width,initial-scale=1" /> <title>Apache SDAP - Science Data Analytics Platform</title> <link rel="shortcut icon" href="/favicon.ico" /> <link rel="icon" type="image/png" href="/favicon.png" /> <link rel="stylesheet" href="/css/bootstrap.min.css" /> <link rel="stylesheet" href="/css/style.css" /> </head> <body> <div class="container"> <div class="logos"> <a href="/"> <img src="images/sdap_logo.png" class="pull-left" /> </a> </div> <!-- navigation bar --> <nav class="navbar navbar-default"> <div class="container-fluid"> <div class="navbar-header"> <a class="navbar-brand" href="/">SDAP</a> </div> <div class="navbar-right"> <ul class="nav navbar-nav"> <li class="dropdown toggle"> <a href="#" class="dropdown-toggle" data-toggle="dropdown" role="button" aria-haspopup="true" aria-expanded="false">About SDAP <span class="caret"></span></a> <ul class="dropdown-menu"> <li><a href="/docs">Docs</a></li> <li><a href="/publications">Publications</a></li> <li><a href="/projects">Projects that use SDAP</a></li> <li><a href="/events">Community Events</a></li> </ul> </li> <li><a href="/downloads">Downloads</a></li> <li><a href="/blog">Blog</a></li> <li><a href="/team">Team &amp; Community</a></li> <!-- <li><a href="/resources">Resources</a></li>--> <li class="dropdown toggle"> <a href="#" class="dropdown-toggle" data-toggle="dropdown" role="button" aria-haspopup="true" aria-expanded="false">Apache <span class="caret"></span></a> <ul class="dropdown-menu"> <li><a href="http://www.apache.org/">Apache Software Foundation</a></li> <li><a href="http://www.apache.org/licenses/">License</a></li> <li><a href="http://www.apache.org/foundation/sponsorship">Sponsorship</a></li> <li><a href="http://www.apache.org/foundation/thanks.html">Thanks</a></li> <li><a href="http://www.apache.org/events/current-event/">Events</a></li> <li><a href="http://www.apache.org/security/">Security</a></li> </ul> </li> </ul> </div> </div> </nav> <h1>An introduction to MUDROD recommendation algorithm</h1> <p>Posted <b>2018-04-23</b> by <b>Lewis John McGibbney</b></p> <p>With the recent advances in remote sensing satellites and other sensors, geographic datasets have been growing faster than ever. In response, a number of Spatial Data Infrastructure (SDI) components (e.g. catalogues and portals) have been developed to archive and made those datasets available online. However, finding the right data for scientific research and application development is still a challenge due to the lack of data relevancy information.</p> <p>Recommendation has become extremely common in recent years and are utilized in a variety of areas to help users quickly find useful information. We propose a recommendation system to improve geographic data discovery by mining and utilizing metadata and usage logs. Metadata abstracts are processed with natural language processing methods to find semantic relationship between metadata. Metadata variables are used to calculate spatial and temporal similarity between metadata. In addition, portal logs are analysed to introduce user preference.</p> <center> <img src="/images/recommendation.png" /> Figure 1. Recommendation workflow </center> <p>The system starts by pre-processing raw web logs and metadata (Figure 1). After pre-processing step, sessions are reconstructed from raw web logs and then used to calculate session-based metadata similarity. Metadata are harvested from <a href="https://podaac.jpl.nasa.gov/ws">PO.DAAC web service APIs</a>. Metadata variable values are then converted to value using the united unit to calculate metadata content similarity. Elasticsearch is used to store all of the above similarities. Once a user views a metadata record, the system finds the top-k related metadata with a hybrid recommendation methodology. The hybrid recommendation module integrates results from content-based recommendation and session-based recommendation methods and ranks the final recommendation list in a descending order of similarity.</p> <div> <b>Previous:</b> <a href="/weekly/update/2018/04/23/ranking-algorithms.html">An introduction to MUDROD ranking algorithm</a> </div> <div> <b>Next:</b> <a href="/weekly/update/2018/04/23/vocabulary-similarity-algorithm.html">An introduction to MUDROD vocabulary similarity calculation algorithm</a> </div> <!-- footer --> <nav class="navbar navbar-default"> <div class="navbar-header"> <a class="navbar-brand" href="">SDAP</a> </div> <div class="navbar-text pull-right">&copy; 2017-2025 The Apache Software Foundation. Licensed under <a href="http://www.apache.org/licenses/LICENSE-2.0">Apache License 2.0</a>. <a href="https://privacy.apache.org/policies/privacy-policy-public.html">Privacy Policy</a><br/> Apache SDAP, SDAP, Apache, the Apache feather logo, and the Apache SDAP project logo are trademarks of The Apache Software Foundation.</div> </nav> <script src="/js/jquery.min.js"></script> <script src="/js/bootstrap.min.js"></script> </div> </body> </html>