src/model/optimizer/rmsprop.cc (30 lines of code) (raw):

/** * Licensed to the Apache Software Foundation (ASF) under one * or more contributor license agreements. See the NOTICE file * distributed with this work for additional information * regarding copyright ownership. The ASF licenses this file * to you under the Apache License, Version 2.0 (the * "License"); you may not use this file except in compliance * with the License. You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ #ifndef SRC_MODEL_OPTIMIZER_ADAGRAD_H_ #define SRC_MODEL_OPTIMIZER_ADAGRAD_H_ #include "singa/model/optimizer.h" #include <functional> namespace singa { void RMSProp::Setup(const OptimizerConf& conf) { delta_ = conf.delta(); rho_ = conf.rho(); } // history = history * rho + grad * grad * (1 - rho) // value = value - lr * grad / sqrt(history + delta) void RMSProp::Apply(int epoch, float lr, const string& name, Tensor& grad, Tensor& value, int step) { if (grad.empty()) return; ApplyRegularizerConstraint(epoch, name, value, grad, step); if (learning_rate_multplier_.find(name) != learning_rate_multplier_.end()) lr *= learning_rate_multplier_.at(name); if (history_gradient_.find(name) == history_gradient_.end()) { history_gradient_[name].ResetLike(value); history_gradient_[name].SetValue(0.0f); } Tensor& history = history_gradient_[name]; history *= rho_; Tensor tmp = Square(grad); Axpy(1 - rho_, tmp, &history); Sqrt(history + delta_, &tmp); Div(grad, tmp, &tmp); Axpy(-lr, tmp, &value); } } // namespace singa #endif // SRC_MODEL_OPTIMIZER_ADAGRAD_H_