python/pyspark/__init__.py (72 lines of code) (raw):

# # Licensed to the Apache Software Foundation (ASF) under one or more # contributor license agreements. See the NOTICE file distributed with # this work for additional information regarding copyright ownership. # The ASF licenses this file to You under the Apache License, Version 2.0 # (the "License"); you may not use this file except in compliance with # the License. You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # """ PySpark is the Python API for Spark. Public classes: - :class:`SparkContext`: Main entry point for Spark functionality. - :class:`RDD`: A Resilient Distributed Dataset (RDD), the basic abstraction in Spark. - :class:`Broadcast`: A broadcast variable that gets reused across tasks. - :class:`Accumulator`: An "add-only" shared variable that tasks can only add values to. - :class:`SparkConf`: For configuring Spark. - :class:`SparkFiles`: Access files shipped with jobs. - :class:`StorageLevel`: Finer-grained cache persistence levels. - :class:`TaskContext`: Information about the current running task, available on the workers and experimental. - :class:`RDDBarrier`: Wraps an RDD under a barrier stage for barrier execution. - :class:`BarrierTaskContext`: A :class:`TaskContext` that provides extra info and tooling for barrier execution. - :class:`BarrierTaskInfo`: Information about a barrier task. - :class:`InheritableThread`: A inheritable thread to use in Spark when the pinned thread mode is on. """ import sys from functools import wraps from typing import cast, Any, Callable, TypeVar, Union from pyspark.util import is_remote_only if not is_remote_only(): from pyspark.core.rdd import RDD, RDDBarrier from pyspark.core.files import SparkFiles from pyspark.core.status import StatusTracker, SparkJobInfo, SparkStageInfo from pyspark.core.broadcast import Broadcast from pyspark.core import rdd, files, status, broadcast # for backward compatibility references. sys.modules["pyspark.rdd"] = rdd sys.modules["pyspark.files"] = files sys.modules["pyspark.status"] = status sys.modules["pyspark.broadcast"] = broadcast from pyspark.conf import SparkConf from pyspark.util import InheritableThread, inheritable_thread_target from pyspark.storagelevel import StorageLevel from pyspark.accumulators import Accumulator, AccumulatorParam from pyspark.serializers import MarshalSerializer, CPickleSerializer from pyspark.taskcontext import TaskContext, BarrierTaskContext, BarrierTaskInfo from pyspark.profiler import Profiler, BasicProfiler from pyspark.version import __version__ from pyspark._globals import _NoValue # noqa: F401 _F = TypeVar("_F", bound=Callable) def since(version: Union[str, float]) -> Callable[[_F], _F]: """ A decorator that annotates a function to append the version of Spark the function was added. """ import re indent_p = re.compile(r"\n( +)") def deco(f: _F) -> _F: assert f.__doc__ is not None indents = indent_p.findall(f.__doc__) indent = " " * (min(len(m) for m in indents) if indents else 0) f.__doc__ = f.__doc__.rstrip() + "\n\n%s.. versionadded:: %s" % (indent, version) return f return deco def keyword_only(func: _F) -> _F: """ A decorator that forces keyword arguments in the wrapped method and saves actual input keyword arguments in `_input_kwargs`. Notes ----- Should only be used to wrap a method where first arg is `self` """ @wraps(func) def wrapper(self: Any, *args: Any, **kwargs: Any) -> Any: if len(args) > 0: raise TypeError("Method %s forces keyword arguments." % func.__name__) self._input_kwargs = kwargs return func(self, **kwargs) return cast(_F, wrapper) # To avoid circular dependencies if not is_remote_only(): from pyspark.core.context import SparkContext from pyspark.core import context # for backward compatibility references. sys.modules["pyspark.context"] = context # for back compatibility from pyspark.sql import SQLContext, HiveContext # noqa: F401 from pyspark.sql import Row # noqa: F401 __all__ = [ "SparkConf", "SparkContext", "SparkFiles", "RDD", "StorageLevel", "Broadcast", "Accumulator", "AccumulatorParam", "MarshalSerializer", "CPickleSerializer", "StatusTracker", "SparkJobInfo", "SparkStageInfo", "Profiler", "BasicProfiler", "TaskContext", "RDDBarrier", "BarrierTaskContext", "BarrierTaskInfo", "InheritableThread", "inheritable_thread_target", "__version__", ]