python/pyspark/sql/pandas/serializers.py (884 lines of code) (raw):

# # Licensed to the Apache Software Foundation (ASF) under one or more # contributor license agreements. See the NOTICE file distributed with # this work for additional information regarding copyright ownership. # The ASF licenses this file to You under the Apache License, Version 2.0 # (the "License"); you may not use this file except in compliance with # the License. You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # """ Serializers for PyArrow and pandas conversions. See `pyspark.serializers` for more details. """ from itertools import groupby from typing import TYPE_CHECKING, Optional import pyspark from pyspark.errors import PySparkRuntimeError, PySparkTypeError, PySparkValueError from pyspark.loose_version import LooseVersion from pyspark.serializers import ( Serializer, read_int, write_int, UTF8Deserializer, CPickleSerializer, ) from pyspark.sql import Row from pyspark.sql.pandas.types import ( from_arrow_type, is_variant, to_arrow_type, _create_converter_from_pandas, _create_converter_to_pandas, ) from pyspark.sql.types import ( DataType, StringType, StructType, BinaryType, StructField, LongType, IntegerType, ) if TYPE_CHECKING: import pandas as pd import pyarrow as pa class SpecialLengths: END_OF_DATA_SECTION = -1 PYTHON_EXCEPTION_THROWN = -2 TIMING_DATA = -3 END_OF_STREAM = -4 NULL = -5 START_ARROW_STREAM = -6 class ArrowCollectSerializer(Serializer): """ Deserialize a stream of batches followed by batch order information. Used in PandasConversionMixin._collect_as_arrow() after invoking Dataset.collectAsArrowToPython() in the JVM. """ def __init__(self): self.serializer = ArrowStreamSerializer() def dump_stream(self, iterator, stream): return self.serializer.dump_stream(iterator, stream) def load_stream(self, stream): """ Load a stream of un-ordered Arrow RecordBatches, where the last iteration yields a list of indices that can be used to put the RecordBatches in the correct order. """ # load the batches for batch in self.serializer.load_stream(stream): yield batch # load the batch order indices or propagate any error that occurred in the JVM num = read_int(stream) if num == -1: error_msg = UTF8Deserializer().loads(stream) raise PySparkRuntimeError( errorClass="ERROR_OCCURRED_WHILE_CALLING", messageParameters={ "func_name": "ArrowCollectSerializer.load_stream", "error_msg": error_msg, }, ) batch_order = [] for i in range(num): index = read_int(stream) batch_order.append(index) yield batch_order def __repr__(self): return "ArrowCollectSerializer(%s)" % self.serializer class ArrowStreamSerializer(Serializer): """ Serializes Arrow record batches as a stream. """ def dump_stream(self, iterator, stream): import pyarrow as pa writer = None try: for batch in iterator: if writer is None: writer = pa.RecordBatchStreamWriter(stream, batch.schema) writer.write_batch(batch) finally: if writer is not None: writer.close() def load_stream(self, stream): import pyarrow as pa reader = pa.ipc.open_stream(stream) for batch in reader: yield batch def __repr__(self): return "ArrowStreamSerializer" class ArrowStreamUDFSerializer(ArrowStreamSerializer): """ Same as :class:`ArrowStreamSerializer` but it flattens the struct to Arrow record batch for applying each function with the raw record arrow batch. See also `DataFrame.mapInArrow`. """ def load_stream(self, stream): """ Flatten the struct into Arrow's record batches. """ import pyarrow as pa batches = super(ArrowStreamUDFSerializer, self).load_stream(stream) for batch in batches: struct = batch.column(0) yield [pa.RecordBatch.from_arrays(struct.flatten(), schema=pa.schema(struct.type))] def dump_stream(self, iterator, stream): """ Override because Pandas UDFs require a START_ARROW_STREAM before the Arrow stream is sent. This should be sent after creating the first record batch so in case of an error, it can be sent back to the JVM before the Arrow stream starts. """ import pyarrow as pa def wrap_and_init_stream(): should_write_start_length = True for batch, _ in iterator: assert isinstance(batch, pa.RecordBatch) # Wrap the root struct if len(batch.columns) == 0: # When batch has no column, it should still create # an empty batch with the number of rows set. struct = pa.array([{}] * batch.num_rows) else: struct = pa.StructArray.from_arrays( batch.columns, fields=pa.struct(list(batch.schema)) ) batch = pa.RecordBatch.from_arrays([struct], ["_0"]) # Write the first record batch with initialization. if should_write_start_length: write_int(SpecialLengths.START_ARROW_STREAM, stream) should_write_start_length = False yield batch return super(ArrowStreamUDFSerializer, self).dump_stream(wrap_and_init_stream(), stream) class ArrowStreamUDTFSerializer(ArrowStreamUDFSerializer): """ Same as :class:`ArrowStreamUDFSerializer` but it does not flatten when loading batches. """ def load_stream(self, stream): return ArrowStreamSerializer.load_stream(self, stream) class ArrowStreamGroupUDFSerializer(ArrowStreamUDFSerializer): """ Serializes pyarrow.RecordBatch data with Arrow streaming format. Loads Arrow record batches as ``[[pyarrow.RecordBatch]]`` (one ``[pyarrow.RecordBatch]`` per group) and serializes ``[([pyarrow.RecordBatch], arrow_type)]``. Parameters ---------- assign_cols_by_name : bool If True, then DataFrames will get columns by name """ def __init__(self, assign_cols_by_name): super(ArrowStreamGroupUDFSerializer, self).__init__() self._assign_cols_by_name = assign_cols_by_name def dump_stream(self, iterator, stream): import pyarrow as pa # flatten inner list [([pa.RecordBatch], arrow_type)] into [(pa.RecordBatch, arrow_type)] # so strip off inner iterator induced by ArrowStreamUDFSerializer.load_stream batch_iter = ( (batch, arrow_type) for batches, arrow_type in iterator # tuple constructed in wrap_grouped_map_arrow_udf for batch in batches ) if self._assign_cols_by_name: batch_iter = ( ( pa.RecordBatch.from_arrays( [batch.column(field.name) for field in arrow_type], names=[field.name for field in arrow_type], ), arrow_type, ) for batch, arrow_type in batch_iter ) super(ArrowStreamGroupUDFSerializer, self).dump_stream(batch_iter, stream) class ArrowStreamPandasSerializer(ArrowStreamSerializer): """ Serializes pandas.Series as Arrow data with Arrow streaming format. Parameters ---------- timezone : str A timezone to respect when handling timestamp values safecheck : bool If True, conversion from Arrow to Pandas checks for overflow/truncation assign_cols_by_name : bool If True, then Pandas DataFrames will get columns by name """ def __init__(self, timezone, safecheck): super(ArrowStreamPandasSerializer, self).__init__() self._timezone = timezone self._safecheck = safecheck def arrow_to_pandas( self, arrow_column, idx, struct_in_pandas="dict", ndarray_as_list=False, spark_type=None ): # If the given column is a date type column, creates a series of datetime.date directly # instead of creating datetime64[ns] as intermediate data to avoid overflow caused by # datetime64[ns] type handling. # Cast dates to objects instead of datetime64[ns] dtype to avoid overflow. pandas_options = {"date_as_object": True} import pyarrow as pa if LooseVersion(pa.__version__) >= LooseVersion("13.0.0"): # A legacy option to coerce date32, date64, duration, and timestamp # time units to nanoseconds when converting to pandas. # This option can only be added since 13.0.0. pandas_options.update( { "coerce_temporal_nanoseconds": True, } ) s = arrow_column.to_pandas(**pandas_options) # TODO(SPARK-43579): cache the converter for reuse converter = _create_converter_to_pandas( data_type=spark_type or from_arrow_type(arrow_column.type, prefer_timestamp_ntz=True), nullable=True, timezone=self._timezone, struct_in_pandas=struct_in_pandas, error_on_duplicated_field_names=True, ndarray_as_list=ndarray_as_list, ) return converter(s) def _create_array(self, series, arrow_type, spark_type=None, arrow_cast=False): """ Create an Arrow Array from the given pandas.Series and optional type. Parameters ---------- series : pandas.Series A single series arrow_type : pyarrow.DataType, optional If None, pyarrow's inferred type will be used spark_type : DataType, optional If None, spark type converted from arrow_type will be used arrow_cast: bool, optional Whether to apply Arrow casting when the user-specified return type mismatches the actual return values. Returns ------- pyarrow.Array """ import pyarrow as pa import pandas as pd if isinstance(series.dtype, pd.CategoricalDtype): series = series.astype(series.dtypes.categories.dtype) if arrow_type is not None: dt = spark_type or from_arrow_type(arrow_type, prefer_timestamp_ntz=True) # TODO(SPARK-43579): cache the converter for reuse conv = _create_converter_from_pandas( dt, timezone=self._timezone, error_on_duplicated_field_names=False ) series = conv(series) if hasattr(series.array, "__arrow_array__"): mask = None else: mask = series.isnull() try: try: return pa.Array.from_pandas( series, mask=mask, type=arrow_type, safe=self._safecheck ) except pa.lib.ArrowInvalid: if arrow_cast: return pa.Array.from_pandas(series, mask=mask).cast( target_type=arrow_type, safe=self._safecheck ) else: raise except TypeError as e: error_msg = ( "Exception thrown when converting pandas.Series (%s) " "with name '%s' to Arrow Array (%s)." ) raise PySparkTypeError(error_msg % (series.dtype, series.name, arrow_type)) from e except ValueError as e: error_msg = ( "Exception thrown when converting pandas.Series (%s) " "with name '%s' to Arrow Array (%s)." ) if self._safecheck: error_msg = error_msg + ( " It can be caused by overflows or other " "unsafe conversions warned by Arrow. Arrow safe type check " "can be disabled by using SQL config " "`spark.sql.execution.pandas.convertToArrowArraySafely`." ) raise PySparkValueError(error_msg % (series.dtype, series.name, arrow_type)) from e def _create_batch(self, series): """ Create an Arrow record batch from the given pandas.Series or list of Series, with optional type. Parameters ---------- series : pandas.Series or list A single series, list of series, or list of (series, arrow_type) Returns ------- pyarrow.RecordBatch Arrow RecordBatch """ import pyarrow as pa # Make input conform to # [(series1, arrow_type1, spark_type1), (series2, arrow_type2, spark_type2), ...] if ( not isinstance(series, (list, tuple)) or (len(series) == 2 and isinstance(series[1], pa.DataType)) or ( len(series) == 3 and isinstance(series[1], pa.DataType) and isinstance(series[2], DataType) ) ): series = [series] series = ((s, None) if not isinstance(s, (list, tuple)) else s for s in series) series = ((s[0], s[1], None) if len(s) == 2 else s for s in series) arrs = [ self._create_array(s, arrow_type, spark_type) for s, arrow_type, spark_type in series ] return pa.RecordBatch.from_arrays(arrs, ["_%d" % i for i in range(len(arrs))]) def dump_stream(self, iterator, stream): """ Make ArrowRecordBatches from Pandas Series and serialize. Input is a single series or a list of series accompanied by an optional pyarrow type to coerce the data to. """ batches = (self._create_batch(series) for series in iterator) super(ArrowStreamPandasSerializer, self).dump_stream(batches, stream) def load_stream(self, stream): """ Deserialize ArrowRecordBatches to an Arrow table and return as a list of pandas.Series. """ batches = super(ArrowStreamPandasSerializer, self).load_stream(stream) import pyarrow as pa import pandas as pd for batch in batches: pandas_batches = [ self.arrow_to_pandas(c, i) for i, c in enumerate(pa.Table.from_batches([batch]).itercolumns()) ] if len(pandas_batches) == 0: yield [pd.Series([pyspark._NoValue] * batch.num_rows)] else: yield pandas_batches def __repr__(self): return "ArrowStreamPandasSerializer" class ArrowStreamPandasUDFSerializer(ArrowStreamPandasSerializer): """ Serializer used by Python worker to evaluate Pandas UDFs """ def __init__( self, timezone, safecheck, assign_cols_by_name, df_for_struct=False, struct_in_pandas="dict", ndarray_as_list=False, arrow_cast=False, input_types=None, ): super(ArrowStreamPandasUDFSerializer, self).__init__(timezone, safecheck) self._assign_cols_by_name = assign_cols_by_name self._df_for_struct = df_for_struct self._struct_in_pandas = struct_in_pandas self._ndarray_as_list = ndarray_as_list self._arrow_cast = arrow_cast self._input_types = input_types def arrow_to_pandas(self, arrow_column, idx): import pyarrow.types as types # If the arrow type is struct, return a pandas dataframe where the fields of the struct # correspond to columns in the DataFrame. However, if the arrow struct is actually a # Variant, which is an atomic type, treat it as a non-struct arrow type. if ( self._df_for_struct and types.is_struct(arrow_column.type) and not is_variant(arrow_column.type) ): import pandas as pd series = [ super(ArrowStreamPandasUDFSerializer, self) .arrow_to_pandas( column, i, self._struct_in_pandas, self._ndarray_as_list, spark_type=( self._input_types[idx][i].dataType if self._input_types is not None else None ), ) .rename(field.name) for i, (column, field) in enumerate(zip(arrow_column.flatten(), arrow_column.type)) ] s = pd.concat(series, axis=1) else: s = super(ArrowStreamPandasUDFSerializer, self).arrow_to_pandas( arrow_column, idx, self._struct_in_pandas, self._ndarray_as_list, spark_type=self._input_types[idx] if self._input_types is not None else None, ) return s def _create_struct_array( self, df: "pd.DataFrame", arrow_struct_type: "pa.StructType", spark_type: Optional[StructType] = None, ): """ Create an Arrow StructArray from the given pandas.DataFrame and arrow struct type. Parameters ---------- df : pandas.DataFrame A pandas DataFrame arrow_struct_type : pyarrow.StructType pyarrow struct type Returns ------- pyarrow.Array """ import pyarrow as pa if len(df.columns) == 0: return pa.array([{}] * len(df), arrow_struct_type) # Assign result columns by schema name if user labeled with strings if self._assign_cols_by_name and any(isinstance(name, str) for name in df.columns): struct_arrs = [ self._create_array( df[field.name], field.type, spark_type=( spark_type[field.name].dataType if spark_type is not None else None ), arrow_cast=self._arrow_cast, ) for field in arrow_struct_type ] # Assign result columns by position else: struct_arrs = [ # the selected series has name '1', so we rename it to field.name # as the name is used by _create_array to provide a meaningful error message self._create_array( df[df.columns[i]].rename(field.name), field.type, spark_type=spark_type[i].dataType if spark_type is not None else None, arrow_cast=self._arrow_cast, ) for i, field in enumerate(arrow_struct_type) ] return pa.StructArray.from_arrays(struct_arrs, fields=list(arrow_struct_type)) def _create_batch(self, series): """ Create an Arrow record batch from the given pandas.Series pandas.DataFrame or list of Series or DataFrame, with optional type. Parameters ---------- series : pandas.Series or pandas.DataFrame or list A single series or dataframe, list of series or dataframe, or list of (series or dataframe, arrow_type) Returns ------- pyarrow.RecordBatch Arrow RecordBatch """ import pandas as pd import pyarrow as pa # Make input conform to # [(series1, arrow_type1, spark_type1), (series2, arrow_type2, spark_type2), ...] if ( not isinstance(series, (list, tuple)) or (len(series) == 2 and isinstance(series[1], pa.DataType)) or ( len(series) == 3 and isinstance(series[1], pa.DataType) and isinstance(series[2], DataType) ) ): series = [series] series = ((s, None) if not isinstance(s, (list, tuple)) else s for s in series) series = ((s[0], s[1], None) if len(s) == 2 else s for s in series) arrs = [] for s, arrow_type, spark_type in series: # Variants are represented in arrow as structs with additional metadata (checked by # is_variant). If the data type is Variant, return a VariantVal atomic type instead of # a dict of two binary values. if ( self._struct_in_pandas == "dict" and arrow_type is not None and pa.types.is_struct(arrow_type) and not is_variant(arrow_type) ): # A pandas UDF should return pd.DataFrame when the return type is a struct type. # If it returns a pd.Series, it should throw an error. if not isinstance(s, pd.DataFrame): raise PySparkValueError( "Invalid return type. Please make sure that the UDF returns a " "pandas.DataFrame when the specified return type is StructType." ) arrs.append(self._create_struct_array(s, arrow_type, spark_type=spark_type)) else: arrs.append( self._create_array( s, arrow_type, spark_type=spark_type, arrow_cast=self._arrow_cast ) ) return pa.RecordBatch.from_arrays(arrs, ["_%d" % i for i in range(len(arrs))]) def dump_stream(self, iterator, stream): """ Override because Pandas UDFs require a START_ARROW_STREAM before the Arrow stream is sent. This should be sent after creating the first record batch so in case of an error, it can be sent back to the JVM before the Arrow stream starts. """ def init_stream_yield_batches(): should_write_start_length = True for series in iterator: batch = self._create_batch(series) if should_write_start_length: write_int(SpecialLengths.START_ARROW_STREAM, stream) should_write_start_length = False yield batch return ArrowStreamSerializer.dump_stream(self, init_stream_yield_batches(), stream) def __repr__(self): return "ArrowStreamPandasUDFSerializer" class ArrowStreamPandasUDTFSerializer(ArrowStreamPandasUDFSerializer): """ Serializer used by Python worker to evaluate Arrow-optimized Python UDTFs. """ def __init__(self, timezone, safecheck): super(ArrowStreamPandasUDTFSerializer, self).__init__( timezone=timezone, safecheck=safecheck, # The output pandas DataFrame's columns are unnamed. assign_cols_by_name=False, # Set to 'False' to avoid converting struct type inputs into a pandas DataFrame. df_for_struct=False, # Defines how struct type inputs are converted. If set to "row", struct type inputs # are converted into Rows. Without this setting, a struct type input would be treated # as a dictionary. For example, for named_struct('name', 'Alice', 'age', 1), # if struct_in_pandas="dict", it becomes {"name": "Alice", "age": 1} # if struct_in_pandas="row", it becomes Row(name="Alice", age=1) struct_in_pandas="row", # When dealing with array type inputs, Arrow converts them into numpy.ndarrays. # To ensure consistency across regular and arrow-optimized UDTFs, we further # convert these numpy.ndarrays into Python lists. ndarray_as_list=True, # Enables explicit casting for mismatched return types of Arrow Python UDTFs. arrow_cast=True, ) self._converter_map = dict() def _create_batch(self, series): """ Create an Arrow record batch from the given pandas.Series pandas.DataFrame or list of Series or DataFrame, with optional type. Parameters ---------- series : pandas.Series or pandas.DataFrame or list A single series or dataframe, list of series or dataframe, or list of (series or dataframe, arrow_type) Returns ------- pyarrow.RecordBatch Arrow RecordBatch """ import pandas as pd import pyarrow as pa # Make input conform to [(series1, type1), (series2, type2), ...] if not isinstance(series, (list, tuple)) or ( len(series) == 2 and isinstance(series[1], pa.DataType) ): series = [series] series = ((s, None) if not isinstance(s, (list, tuple)) else s for s in series) arrs = [] for s, t in series: if not isinstance(s, pd.DataFrame): raise PySparkValueError( "Output of an arrow-optimized Python UDTFs expects " f"a pandas.DataFrame but got: {type(s)}" ) arrs.append(self._create_struct_array(s, t)) return pa.RecordBatch.from_arrays(arrs, ["_%d" % i for i in range(len(arrs))]) def _get_or_create_converter_from_pandas(self, dt): if dt not in self._converter_map: conv = _create_converter_from_pandas( dt, timezone=self._timezone, error_on_duplicated_field_names=False, ignore_unexpected_complex_type_values=True, ) self._converter_map[dt] = conv return self._converter_map[dt] def _create_array(self, series, arrow_type, spark_type=None, arrow_cast=False): """ Override the `_create_array` method in the superclass to create an Arrow Array from a given pandas.Series and an arrow type. The difference here is that we always use arrow cast when creating the arrow array. Also, the error messages are specific to arrow-optimized Python UDTFs. Parameters ---------- series : pandas.Series A single series arrow_type : pyarrow.DataType, optional If None, pyarrow's inferred type will be used spark_type : DataType, optional If None, spark type converted from arrow_type will be used arrow_cast: bool, optional Whether to apply Arrow casting when the user-specified return type mismatches the actual return values. Returns ------- pyarrow.Array """ import pyarrow as pa import pandas as pd if isinstance(series.dtype, pd.CategoricalDtype): series = series.astype(series.dtypes.categories.dtype) if arrow_type is not None: dt = spark_type or from_arrow_type(arrow_type, prefer_timestamp_ntz=True) conv = self._get_or_create_converter_from_pandas(dt) series = conv(series) if hasattr(series.array, "__arrow_array__"): mask = None else: mask = series.isnull() try: try: return pa.Array.from_pandas( series, mask=mask, type=arrow_type, safe=self._safecheck ) except pa.lib.ArrowException: if arrow_cast: return pa.Array.from_pandas(series, mask=mask).cast( target_type=arrow_type, safe=self._safecheck ) else: raise except pa.lib.ArrowException: # Display the most user-friendly error messages instead of showing # arrow's error message. This also works better with Spark Connect # where the exception messages are by default truncated. raise PySparkRuntimeError( errorClass="UDTF_ARROW_TYPE_CAST_ERROR", messageParameters={ "col_name": series.name, "col_type": str(series.dtype), "arrow_type": arrow_type, }, ) from None def __repr__(self): return "ArrowStreamPandasUDTFSerializer" class CogroupArrowUDFSerializer(ArrowStreamGroupUDFSerializer): """ Serializes pyarrow.RecordBatch data with Arrow streaming format. Loads Arrow record batches as `[([pa.RecordBatch], [pa.RecordBatch])]` (one tuple per group) and serializes `[([pa.RecordBatch], arrow_type)]`. Parameters ---------- assign_cols_by_name : bool If True, then DataFrames will get columns by name """ def __init__(self, assign_cols_by_name): super(CogroupArrowUDFSerializer, self).__init__(assign_cols_by_name) def load_stream(self, stream): """ Deserialize Cogrouped ArrowRecordBatches and yield as two `pyarrow.RecordBatch`es. """ dataframes_in_group = None while dataframes_in_group is None or dataframes_in_group > 0: dataframes_in_group = read_int(stream) if dataframes_in_group == 2: batches1 = [batch for batch in ArrowStreamSerializer.load_stream(self, stream)] batches2 = [batch for batch in ArrowStreamSerializer.load_stream(self, stream)] yield batches1, batches2 elif dataframes_in_group != 0: raise PySparkValueError( errorClass="INVALID_NUMBER_OF_DATAFRAMES_IN_GROUP", messageParameters={"dataframes_in_group": str(dataframes_in_group)}, ) class CogroupPandasUDFSerializer(ArrowStreamPandasUDFSerializer): def load_stream(self, stream): """ Deserialize Cogrouped ArrowRecordBatches to a tuple of Arrow tables and yield as two lists of pandas.Series. """ import pyarrow as pa dataframes_in_group = None while dataframes_in_group is None or dataframes_in_group > 0: dataframes_in_group = read_int(stream) if dataframes_in_group == 2: batch1 = [batch for batch in ArrowStreamSerializer.load_stream(self, stream)] batch2 = [batch for batch in ArrowStreamSerializer.load_stream(self, stream)] yield ( [ self.arrow_to_pandas(c, i) for i, c in enumerate(pa.Table.from_batches(batch1).itercolumns()) ], [ self.arrow_to_pandas(c, i) for i, c in enumerate(pa.Table.from_batches(batch2).itercolumns()) ], ) elif dataframes_in_group != 0: raise PySparkValueError( errorClass="INVALID_NUMBER_OF_DATAFRAMES_IN_GROUP", messageParameters={"dataframes_in_group": str(dataframes_in_group)}, ) class ApplyInPandasWithStateSerializer(ArrowStreamPandasUDFSerializer): """ Serializer used by Python worker to evaluate UDF for applyInPandasWithState. Parameters ---------- timezone : str A timezone to respect when handling timestamp values safecheck : bool If True, conversion from Arrow to Pandas checks for overflow/truncation assign_cols_by_name : bool If True, then Pandas DataFrames will get columns by name state_object_schema : StructType The type of state object represented as Spark SQL type arrow_max_records_per_batch : int Limit of the number of records that can be written to a single ArrowRecordBatch in memory. """ def __init__( self, timezone, safecheck, assign_cols_by_name, state_object_schema, arrow_max_records_per_batch, prefers_large_var_types, ): super(ApplyInPandasWithStateSerializer, self).__init__( timezone, safecheck, assign_cols_by_name ) self.pickleSer = CPickleSerializer() self.utf8_deserializer = UTF8Deserializer() self.state_object_schema = state_object_schema self.result_count_df_type = StructType( [ StructField("dataCount", IntegerType()), StructField("stateCount", IntegerType()), ] ) self.result_count_pdf_arrow_type = to_arrow_type( self.result_count_df_type, prefers_large_types=prefers_large_var_types ) self.result_state_df_type = StructType( [ StructField("properties", StringType()), StructField("keyRowAsUnsafe", BinaryType()), StructField("object", BinaryType()), StructField("oldTimeoutTimestamp", LongType()), ] ) self.result_state_pdf_arrow_type = to_arrow_type( self.result_state_df_type, prefers_large_types=prefers_large_var_types ) self.arrow_max_records_per_batch = arrow_max_records_per_batch def load_stream(self, stream): """ Read ArrowRecordBatches from stream, deserialize them to populate a list of pair (data chunk, state), and convert the data into a list of pandas.Series. Please refer the doc of inner function `gen_data_and_state` for more details how this function works in overall. In addition, this function further groups the return of `gen_data_and_state` by the state instance (same semantic as grouping by grouping key) and produces an iterator of data chunks for each group, so that the caller can lazily materialize the data chunk. """ import pyarrow as pa import json from itertools import groupby from pyspark.sql.streaming.state import GroupState def construct_state(state_info_col): """ Construct state instance from the value of state information column. """ state_info_col_properties = state_info_col["properties"] state_info_col_key_row = state_info_col["keyRowAsUnsafe"] state_info_col_object = state_info_col["object"] state_properties = json.loads(state_info_col_properties) if state_info_col_object: state_object = self.pickleSer.loads(state_info_col_object) else: state_object = None state_properties["optionalValue"] = state_object return GroupState( keyAsUnsafe=state_info_col_key_row, valueSchema=self.state_object_schema, **state_properties, ) def gen_data_and_state(batches): """ Deserialize ArrowRecordBatches and return a generator of `(a list of pandas.Series, state)`. The logic on deserialization is following: 1. Read the entire data part from Arrow RecordBatch. 2. Read the entire state information part from Arrow RecordBatch. 3. Loop through each state information: 3.A. Extract the data out from entire data via the information of data range. 3.B. Construct a new state instance if the state information is the first occurrence for the current grouping key. 3.C. Leverage the existing state instance if it is already available for the current grouping key. (Meaning it's not the first occurrence.) 3.D. Remove the cache of state instance if the state information denotes the data is the last chunk for current grouping key. This deserialization logic assumes that Arrow RecordBatches contain the data with the ordering that data chunks for same grouping key will appear sequentially. This function must avoid materializing multiple Arrow RecordBatches into memory at the same time. And data chunks from the same grouping key should appear sequentially, to further group them based on state instance (same state instance will be produced for same grouping key). """ state_for_current_group = None for batch in batches: batch_schema = batch.schema data_schema = pa.schema([batch_schema[i] for i in range(0, len(batch_schema) - 1)]) state_schema = pa.schema( [ batch_schema[-1], ] ) batch_columns = batch.columns data_columns = batch_columns[0:-1] state_column = batch_columns[-1] data_batch = pa.RecordBatch.from_arrays(data_columns, schema=data_schema) state_batch = pa.RecordBatch.from_arrays( [ state_column, ], schema=state_schema, ) state_arrow = pa.Table.from_batches([state_batch]).itercolumns() state_pandas = [self.arrow_to_pandas(c, i) for i, c in enumerate(state_arrow)][0] for state_idx in range(0, len(state_pandas)): state_info_col = state_pandas.iloc[state_idx] if not state_info_col: # no more data with grouping key + state break data_start_offset = state_info_col["startOffset"] num_data_rows = state_info_col["numRows"] is_last_chunk = state_info_col["isLastChunk"] if state_for_current_group: # use the state, we already have state for same group and there should be # some data in same group being processed earlier state = state_for_current_group else: # there is no state being stored for same group, construct one state = construct_state(state_info_col) if is_last_chunk: # discard the state being cached for same group state_for_current_group = None elif not state_for_current_group: # there's no cached state but expected to have additional data in same group # cache the current state state_for_current_group = state data_batch_for_group = data_batch.slice(data_start_offset, num_data_rows) data_arrow = pa.Table.from_batches([data_batch_for_group]).itercolumns() data_pandas = [self.arrow_to_pandas(c, i) for i, c in enumerate(data_arrow)] # state info yield ( data_pandas, state, ) _batches = super(ArrowStreamPandasSerializer, self).load_stream(stream) data_state_generator = gen_data_and_state(_batches) # state will be same object for same grouping key for _state, _data in groupby(data_state_generator, key=lambda x: x[1]): yield ( _data, _state, ) def dump_stream(self, iterator, stream): """ Read through an iterator of (iterator of pandas DataFrame, state), serialize them to Arrow RecordBatches, and write batches to stream. """ import pandas as pd import pyarrow as pa def construct_state_pdf(state): """ Construct a pandas DataFrame from the state instance. """ state_properties = state.json().encode("utf-8") state_key_row_as_binary = state._keyAsUnsafe if state.exists: state_object = self.pickleSer.dumps(state._value_schema.toInternal(state._value)) else: state_object = None state_old_timeout_timestamp = state.oldTimeoutTimestamp state_dict = { "properties": [ state_properties, ], "keyRowAsUnsafe": [ state_key_row_as_binary, ], "object": [ state_object, ], "oldTimeoutTimestamp": [ state_old_timeout_timestamp, ], } return pd.DataFrame.from_dict(state_dict) def construct_record_batch(pdfs, pdf_data_cnt, pdf_schema, state_pdfs, state_data_cnt): """ Construct a new Arrow RecordBatch based on output pandas DataFrames and states. Each one matches to the single struct field for Arrow schema. We also need an extra one to indicate array length for data and state, so the return value of Arrow RecordBatch will have schema with three fields, in `count`, `data`, `state` order. (Readers are expected to access the field via position rather than the name. We do not guarantee the name of the field.) Note that Arrow RecordBatch requires all columns to have all same number of rows, hence this function inserts empty data for count/state/data with less elements to compensate. """ max_data_cnt = max(1, max(pdf_data_cnt, state_data_cnt)) # We only use the first row in the count column, and fill other rows to be the same # value, hoping it is more friendly for compression, in case it is needed. count_dict = { "dataCount": [pdf_data_cnt] * max_data_cnt, "stateCount": [state_data_cnt] * max_data_cnt, } count_pdf = pd.DataFrame.from_dict(count_dict) empty_row_cnt_in_data = max_data_cnt - pdf_data_cnt empty_row_cnt_in_state = max_data_cnt - state_data_cnt empty_rows_pdf = pd.DataFrame( dict.fromkeys(pa.schema(pdf_schema).names), index=[x for x in range(0, empty_row_cnt_in_data)], ) empty_rows_state = pd.DataFrame( columns=["properties", "keyRowAsUnsafe", "object", "oldTimeoutTimestamp"], index=[x for x in range(0, empty_row_cnt_in_state)], ) pdfs.append(empty_rows_pdf) state_pdfs.append(empty_rows_state) merged_pdf = pd.concat(pdfs, ignore_index=True) merged_state_pdf = pd.concat(state_pdfs, ignore_index=True) return self._create_batch( [ (count_pdf, self.result_count_pdf_arrow_type), (merged_pdf, pdf_schema), (merged_state_pdf, self.result_state_pdf_arrow_type), ] ) def serialize_batches(): """ Read through an iterator of (iterator of pandas DataFrame, state), and serialize them to Arrow RecordBatches. This function does batching on constructing the Arrow RecordBatch; a batch will be serialized to the Arrow RecordBatch when the total number of records exceeds the configured threshold. """ # a set of variables for the state of current batch which will be converted to Arrow # RecordBatch. pdfs = [] state_pdfs = [] pdf_data_cnt = 0 state_data_cnt = 0 return_schema = None for data in iterator: # data represents the result of each call of user function packaged_result = data[0] # There are two results from the call of user function: # 1) iterator of pandas DataFrame (output) # 2) updated state instance pdf_iter = packaged_result[0][0] state = packaged_result[0][1] # This is static and won't change across batches. return_schema = packaged_result[1] for pdf in pdf_iter: # We ignore empty pandas DataFrame. if len(pdf) > 0: pdf_data_cnt += len(pdf) pdfs.append(pdf) # If the total number of records in current batch exceeds the configured # threshold, time to construct the Arrow RecordBatch from the batch. if pdf_data_cnt > self.arrow_max_records_per_batch: batch = construct_record_batch( pdfs, pdf_data_cnt, return_schema, state_pdfs, state_data_cnt ) # Reset the variables to start with new batch for further data. pdfs = [] state_pdfs = [] pdf_data_cnt = 0 state_data_cnt = 0 yield batch # This has to be performed 'after' evaluating all elements in iterator, so that # the user function has been completed and the state is guaranteed to be updated. state_pdf = construct_state_pdf(state) state_pdfs.append(state_pdf) state_data_cnt += 1 # processed all output, but current batch may not be flushed yet. if pdf_data_cnt > 0 or state_data_cnt > 0: batch = construct_record_batch( pdfs, pdf_data_cnt, return_schema, state_pdfs, state_data_cnt ) yield batch def init_stream_yield_batches(batches): """ This function helps to ensure the requirement for Pandas UDFs - Pandas UDFs require a START_ARROW_STREAM before the Arrow stream is sent. START_ARROW_STREAM should be sent after creating the first record batch so in case of an error, it can be sent back to the JVM before the Arrow stream starts. """ should_write_start_length = True for batch in batches: if should_write_start_length: write_int(SpecialLengths.START_ARROW_STREAM, stream) should_write_start_length = False yield batch batches_to_write = init_stream_yield_batches(serialize_batches()) return ArrowStreamSerializer.dump_stream(self, batches_to_write, stream) class TransformWithStateInPandasSerializer(ArrowStreamPandasUDFSerializer): """ Serializer used by Python worker to evaluate UDF for :meth:`pyspark.sql.GroupedData.transformWithStateInPandasSerializer`. Parameters ---------- timezone : str A timezone to respect when handling timestamp values safecheck : bool If True, conversion from Arrow to Pandas checks for overflow/truncation assign_cols_by_name : bool If True, then Pandas DataFrames will get columns by name arrow_max_records_per_batch : int Limit of the number of records that can be written to a single ArrowRecordBatch in memory. """ def __init__(self, timezone, safecheck, assign_cols_by_name, arrow_max_records_per_batch): super(TransformWithStateInPandasSerializer, self).__init__( timezone, safecheck, assign_cols_by_name ) self.arrow_max_records_per_batch = arrow_max_records_per_batch self.key_offsets = None def load_stream(self, stream): """ Read ArrowRecordBatches from stream, deserialize them to populate a list of data chunk, and convert the data into Rows. Please refer the doc of inner function `generate_data_batches` for more details how this function works in overall. """ import pyarrow as pa from pyspark.sql.streaming.stateful_processor_util import ( TransformWithStateInPySparkFuncMode, ) def generate_data_batches(batches): """ Deserialize ArrowRecordBatches and return a generator of Rows. The deserialization logic assumes that Arrow RecordBatches contain the data with the ordering that data chunks for same grouping key will appear sequentially. This function must avoid materializing multiple Arrow RecordBatches into memory at the same time. And data chunks from the same grouping key should appear sequentially. """ for batch in batches: data_pandas = [ self.arrow_to_pandas(c, i) for i, c in enumerate(pa.Table.from_batches([batch]).itercolumns()) ] key_series = [data_pandas[o] for o in self.key_offsets] batch_key = tuple(s[0] for s in key_series) yield (batch_key, data_pandas) _batches = super(ArrowStreamPandasSerializer, self).load_stream(stream) data_batches = generate_data_batches(_batches) for k, g in groupby(data_batches, key=lambda x: x[0]): yield (TransformWithStateInPySparkFuncMode.PROCESS_DATA, k, g) yield (TransformWithStateInPySparkFuncMode.PROCESS_TIMER, None, None) yield (TransformWithStateInPySparkFuncMode.COMPLETE, None, None) def dump_stream(self, iterator, stream): """ Read through an iterator of (iterator of pandas DataFrame), serialize them to Arrow RecordBatches, and write batches to stream. """ def flatten_iterator(): # iterator: iter[list[(iter[pandas.DataFrame], pdf_type)]] for packed in iterator: iter_pdf_with_type = packed[0] iter_pdf = iter_pdf_with_type[0] pdf_type = iter_pdf_with_type[1] for pdf in iter_pdf: yield (pdf, pdf_type) super().dump_stream(flatten_iterator(), stream) class TransformWithStateInPandasInitStateSerializer(TransformWithStateInPandasSerializer): """ Serializer used by Python worker to evaluate UDF for :meth:`pyspark.sql.GroupedData.transformWithStateInPandasInitStateSerializer`. Parameters ---------- Same as input parameters in TransformWithStateInPandasSerializer. """ def __init__(self, timezone, safecheck, assign_cols_by_name, arrow_max_records_per_batch): super(TransformWithStateInPandasInitStateSerializer, self).__init__( timezone, safecheck, assign_cols_by_name, arrow_max_records_per_batch ) self.init_key_offsets = None def load_stream(self, stream): import pyarrow as pa from pyspark.sql.streaming.stateful_processor_util import ( TransformWithStateInPySparkFuncMode, ) def generate_data_batches(batches): """ Deserialize ArrowRecordBatches and return a generator of pandas.Series list. The deserialization logic assumes that Arrow RecordBatches contain the data with the ordering that data chunks for same grouping key will appear sequentially. See `TransformWithStateInPandasPythonInitialStateRunner` for arrow batch schema sent from JVM. This function flatten the columns of input rows and initial state rows and feed them into the data generator. """ def flatten_columns(cur_batch, col_name): state_column = cur_batch.column(cur_batch.schema.get_field_index(col_name)) state_field_names = [ state_column.type[i].name for i in range(state_column.type.num_fields) ] state_field_arrays = [ state_column.field(i) for i in range(state_column.type.num_fields) ] table_from_fields = pa.Table.from_arrays( state_field_arrays, names=state_field_names ) return table_from_fields """ The arrow batch is written in the schema: schema: StructType = new StructType() .add("inputData", dataSchema) .add("initState", initStateSchema) We'll parse batch into Tuples of (key, inputData, initState) and pass into the Python data generator. All rows in the same batch have the same grouping key. """ for batch in batches: flatten_state_table = flatten_columns(batch, "inputData") data_pandas = [ self.arrow_to_pandas(c, i) for i, c in enumerate(flatten_state_table.itercolumns()) ] flatten_init_table = flatten_columns(batch, "initState") init_data_pandas = [ self.arrow_to_pandas(c, i) for i, c in enumerate(flatten_init_table.itercolumns()) ] key_series = [data_pandas[o] for o in self.key_offsets] init_key_series = [init_data_pandas[o] for o in self.init_key_offsets] if any(s.empty for s in key_series): # If any row is empty, assign batch_key using init_key_series batch_key = tuple(s[0] for s in init_key_series) else: # If all rows are non-empty, create batch_key from key_series batch_key = tuple(s[0] for s in key_series) yield (batch_key, data_pandas, init_data_pandas) _batches = super(ArrowStreamPandasSerializer, self).load_stream(stream) data_batches = generate_data_batches(_batches) for k, g in groupby(data_batches, key=lambda x: x[0]): yield (TransformWithStateInPySparkFuncMode.PROCESS_DATA, k, g) yield (TransformWithStateInPySparkFuncMode.PROCESS_TIMER, None, None) yield (TransformWithStateInPySparkFuncMode.COMPLETE, None, None) class TransformWithStateInPySparkRowSerializer(ArrowStreamUDFSerializer): """ Serializer used by Python worker to evaluate UDF for :meth:`pyspark.sql.GroupedData.transformWithState`. Parameters ---------- arrow_max_records_per_batch : int Limit of the number of records that can be written to a single ArrowRecordBatch in memory. """ def __init__(self, arrow_max_records_per_batch): super(TransformWithStateInPySparkRowSerializer, self).__init__() self.arrow_max_records_per_batch = arrow_max_records_per_batch self.key_offsets = None def load_stream(self, stream): """ Read ArrowRecordBatches from stream, deserialize them to populate a list of data chunks, and convert the data into a list of pandas.Series. Please refer the doc of inner function `generate_data_batches` for more details how this function works in overall. """ from pyspark.sql.streaming.stateful_processor_util import ( TransformWithStateInPySparkFuncMode, ) import itertools def generate_data_batches(batches): """ Deserialize ArrowRecordBatches and return a generator of Row. The deserialization logic assumes that Arrow RecordBatches contain the data with the ordering that data chunks for same grouping key will appear sequentially. This function must avoid materializing multiple Arrow RecordBatches into memory at the same time. And data chunks from the same grouping key should appear sequentially. """ for batch in batches: DataRow = Row(*(batch.schema.names)) # This is supposed to be the same. batch_key = tuple(batch[o][0].as_py() for o in self.key_offsets) for row_idx in range(batch.num_rows): row = DataRow( *(batch.column(i)[row_idx].as_py() for i in range(batch.num_columns)) ) yield (batch_key, row) _batches = super(ArrowStreamUDFSerializer, self).load_stream(stream) data_batches = generate_data_batches(_batches) for k, g in groupby(data_batches, key=lambda x: x[0]): chained = itertools.chain(g) chained_values = map(lambda x: x[1], chained) yield (TransformWithStateInPySparkFuncMode.PROCESS_DATA, k, chained_values) yield (TransformWithStateInPySparkFuncMode.PROCESS_TIMER, None, None) yield (TransformWithStateInPySparkFuncMode.COMPLETE, None, None) def dump_stream(self, iterator, stream): """ Read through an iterator of (iterator of Row), serialize them to Arrow RecordBatches, and write batches to stream. """ import pyarrow as pa def flatten_iterator(): # iterator: iter[list[(iter[Row], pdf_type)]] for packed in iterator: iter_row_with_type = packed[0] iter_row = iter_row_with_type[0] pdf_type = iter_row_with_type[1] rows_as_dict = [] for row in iter_row: row_as_dict = row.asDict(True) rows_as_dict.append(row_as_dict) pdf_schema = pa.schema(list(pdf_type)) record_batch = pa.RecordBatch.from_pylist(rows_as_dict, schema=pdf_schema) yield (record_batch, pdf_type) return ArrowStreamUDFSerializer.dump_stream(self, flatten_iterator(), stream) class TransformWithStateInPySparkRowInitStateSerializer(TransformWithStateInPySparkRowSerializer): """ Serializer used by Python worker to evaluate UDF for :meth:`pyspark.sql.GroupedData.transformWithStateInPySparkRowInitStateSerializer`. Parameters ---------- Same as input parameters in TransformWithStateInPySparkRowSerializer. """ def __init__(self, arrow_max_records_per_batch): super(TransformWithStateInPySparkRowInitStateSerializer, self).__init__( arrow_max_records_per_batch ) self.init_key_offsets = None def load_stream(self, stream): import itertools import pyarrow as pa from pyspark.sql.streaming.stateful_processor_util import ( TransformWithStateInPySparkFuncMode, ) def generate_data_batches(batches): """ Deserialize ArrowRecordBatches and return a generator of Row. The deserialization logic assumes that Arrow RecordBatches contain the data with the ordering that data chunks for same grouping key will appear sequentially. See `TransformWithStateInPySparkPythonInitialStateRunner` for arrow batch schema sent from JVM. This function flattens the columns of input rows and initial state rows and feed them into the data generator. """ def extract_rows(cur_batch, col_name, key_offsets): data_column = cur_batch.column(cur_batch.schema.get_field_index(col_name)) data_field_names = [ data_column.type[i].name for i in range(data_column.type.num_fields) ] data_field_arrays = [ data_column.field(i) for i in range(data_column.type.num_fields) ] DataRow = Row(*data_field_names) table = pa.Table.from_arrays(data_field_arrays, names=data_field_names) if table.num_rows == 0: return (None, iter([])) else: batch_key = tuple(table.column(o)[0].as_py() for o in key_offsets) rows = [] for row_idx in range(table.num_rows): row = DataRow( *(table.column(i)[row_idx].as_py() for i in range(table.num_columns)) ) rows.append(row) return (batch_key, iter(rows)) """ The arrow batch is written in the schema: schema: StructType = new StructType() .add("inputData", dataSchema) .add("initState", initStateSchema) We'll parse batch into Tuples of (key, inputData, initState) and pass into the Python data generator. All rows in the same batch have the same grouping key. """ for batch in batches: (input_batch_key, input_data_iter) = extract_rows( batch, "inputData", self.key_offsets ) (init_batch_key, init_state_iter) = extract_rows( batch, "initState", self.init_key_offsets ) if input_batch_key is None: batch_key = init_batch_key else: batch_key = input_batch_key for init_state_row in init_state_iter: yield (batch_key, None, init_state_row) for input_data_row in input_data_iter: yield (batch_key, input_data_row, None) _batches = super(ArrowStreamUDFSerializer, self).load_stream(stream) data_batches = generate_data_batches(_batches) for k, g in groupby(data_batches, key=lambda x: x[0]): # g: list(batch_key, input_data_iter, init_state_iter) # they are sharing the iterator, hence need to copy input_values_iter, init_state_iter = itertools.tee(g, 2) chained_input_values = itertools.chain(map(lambda x: x[1], input_values_iter)) chained_init_state_values = itertools.chain(map(lambda x: x[2], init_state_iter)) chained_input_values_without_none = filter( lambda x: x is not None, chained_input_values ) chained_init_state_values_without_none = filter( lambda x: x is not None, chained_init_state_values ) ret_tuple = (chained_input_values_without_none, chained_init_state_values_without_none) yield (TransformWithStateInPySparkFuncMode.PROCESS_DATA, k, ret_tuple) yield (TransformWithStateInPySparkFuncMode.PROCESS_TIMER, None, None) yield (TransformWithStateInPySparkFuncMode.COMPLETE, None, None)