scripts/staging/hmm/HMM.py (40 lines of code) (raw):

#------------------------------------------------------------- # # Licensed to the Apache Software Foundation (ASF) under one # or more contributor license agreements. See the NOTICE file # distributed with this work for additional information # regarding copyright ownership. The ASF licenses this file # to you under the Apache License, Version 2.0 (the # "License"); you may not use this file except in compliance # with the License. You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, # software distributed under the License is distributed on an # "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY # KIND, either express or implied. See the License for the # specific language governing permissions and limitations # under the License. # #------------------------------------------------------------- from bs4 import BeautifulSoup,SoupStrainer import nltk from nltk.tokenize import sent_tokenize, word_tokenize from nltk.stem import WordNetLemmatizer from nltk.corpus import stopwords import string import numpy as np import csv import os def create_dataset(input_file_name, output_file_name): f = open(input_file_name, 'r') data= f.read() lemmatizer = WordNetLemmatizer() soup = BeautifulSoup(data,'html.parser') sentences = [] text_matrix = [] for item in soup.findAll('body'): sentences = sent_tokenize(item.text) for sentence in sentences: text_matrix.append([token for token in word_tokenize(sentence) if token.lower() not in stopwords.words('english') and token not in string.punctuation]) for i in range(len(text_matrix)): for j in range(len(text_matrix[i])): text_matrix[i][j] = lemmatizer.lemmatize(text_matrix[i][j].lower(), pos='v') length = max(map(len, text_matrix)) text_matrix=np.array([row + [None] * (length - len(row)) for row in text_matrix]) try: with open(output_file_name) as csvFile: os.remove(output_file_name) csvFile = open(output_file_name, 'w') for row in text_matrix: writer = csv.writer(csvFile) writer.writerow(row) csvFile.close() except IOError: with open(output_file_name, 'w') as csvFile: for row in text_matrix: writer = csv.writer(csvFile) writer.writerow(row) csvFile.close() create_dataset('reut2-000.sgm', 'text_matrix.csv')