include/tscore/ink_memory.h (338 lines of code) (raw):

/** @file Memory allocation routines for libts. @section license License Licensed to the Apache Software Foundation (ASF) under one or more contributor license agreements. See the NOTICE file distributed with this work for additional information regarding copyright ownership. The ASF licenses this file to you under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. */ #pragma once #include <cctype> #include <cstring> #include <strings.h> #include <cinttypes> #include <limits> #include <string> #include <string_view> #include "tscore/ink_config.h" #include <unistd.h> #include <sys/types.h> #include <sys/uio.h> #include <sys/mman.h> #if TS_HAS_JEMALLOC #if __has_include(<jemalloc/jemalloc.h>) #include <jemalloc/jemalloc.h> #else #include <jemalloc.h> #endif #elif TS_HAS_MIMALLOC #include <mimalloc.h> #elif __has_include(<malloc/malloc.h>) #include <malloc/malloc.h> #elif __has_include(<malloc.h>) #include <malloc.h> #if __has_include(<malloc_np.h>) #include <malloc_np.h> #endif #endif // ! TS_HAS_JEMALLOC #ifndef MADV_NORMAL #define MADV_NORMAL 0 #endif #ifndef MADV_RANDOM #define MADV_RANDOM 1 #endif #ifndef MADV_SEQUENTIAL #define MADV_SEQUENTIAL 2 #endif #ifndef MADV_WILLNEED #define MADV_WILLNEED 3 #endif #ifndef MADV_DONTNEED #define MADV_DONTNEED 4 #endif struct IOVec : public iovec { IOVec() { iov_base = nullptr; iov_len = 0; } IOVec(void *base, size_t len) { iov_base = base; iov_len = len; } }; void *ats_malloc(size_t size); void *ats_calloc(size_t nelem, size_t elsize); void *ats_realloc(void *ptr, size_t size); void *ats_memalign(size_t alignment, size_t size); void ats_free(void *ptr); void *ats_free_null(void *ptr); int ats_msync(caddr_t addr, size_t len, caddr_t end, int flags); int ats_madvise(caddr_t addr, size_t len, int flags); int ats_mlock(caddr_t addr, size_t len); void *ats_track_malloc(size_t size, uint64_t *stat); void *ats_track_realloc(void *ptr, size_t size, uint64_t *alloc_stat, uint64_t *free_stat); void ats_track_free(void *ptr, uint64_t *stat); static inline size_t __attribute__((const)) ats_pagesize() { static size_t page_size; if (page_size) { return page_size; } #if defined(HAVE_SYSCONF) && defined(_SC_PAGESIZE) long ret = sysconf(_SC_PAGESIZE); page_size = static_cast<size_t>((ret > -1) ? ret : 8192); #elif defined(HAVE_GETPAGESIZE) page_size = (size_t)getpagesize(); #else page_size = static_cast<size_t>(8192); #endif return page_size; } /* Some convenience wrappers around strdup() functionality */ char *_xstrdup(const char *str, int length, const char *path); #define ats_strdup(p) _xstrdup((p), -1, nullptr) #define ats_strndup(p, n) _xstrdup((p), n, nullptr) #include <memory> // this is to help with migration to a std::string issue with older code that // expects char* being copied. As more code moves to std::string, this can be // removed to avoid these extra copies. inline char * ats_stringdup(std::string const &p) { return p.empty() ? nullptr : _xstrdup(p.data(), p.size(), nullptr); } inline char * ats_stringdup(std::string_view const &p) { return p.empty() ? nullptr : _xstrdup(p.data(), p.size(), nullptr); } template <typename PtrType, typename SizeType> static inline IOVec make_iovec(PtrType ptr, SizeType sz) { IOVec iov = {ptr, static_cast<size_t>(sz)}; return iov; } template <typename PtrType, unsigned N> static inline IOVec make_iovec(PtrType (&array)[N]) { IOVec iov = {&array[0], static_cast<size_t>(sizeof(array))}; return iov; } /** Set data to zero. Calls @c memset on @a t with a value of zero and a length of @c sizeof(t). This can be used on ordinary and array variables. While this can be used on variables of intrinsic type it's inefficient. @note Because this uses templates it cannot be used on unnamed or locally scoped structures / classes. This is an inherent limitation of templates. Examples: @code foo bar; // value. ink_zero(bar); // zero bar. foo *bar; // pointer. ink_zero(bar); // WRONG - makes the pointer @a bar zero. ink_zero(*bar); // zero what bar points at. foo bar[ZOMG]; // Array of structs. ink_zero(bar); // Zero all structs in array. foo *bar[ZOMG]; // array of pointers. ink_zero(bar); // zero all pointers in the array. @endcode */ template <typename T> inline void ink_zero(T &t) { memset(static_cast<void *>(&t), 0, sizeof(t)); } /** Verify that we can safely shift value num_places places left. * * This checks that the shift will not cause the variable to overflow and that * the value will not become negative. * * @param[in] value The value against which to check whether the shift is safe. * * @param[in] num_places The number of places to check that shifting left is safe. * */ template <typename T> inline constexpr bool can_safely_shift_left(T value, int num_places) { constexpr auto max_value = std::numeric_limits<T>::max(); return value >= 0 && value <= (max_value >> num_places); } /** Scoped resources. An instance of this class is used to hold a contingent resource. When this object goes out of scope the resource is destroyed. If the resource needs to be kept valid it can be released from this container. The standard usage pattern is - Allocate resource. - Perform various other checks or resource allocations which, if they fail, require this resource to be destroyed. - Release the resource. This serves as a base implementation, actual use is usually through specialized subclasses. @see ats_scoped_fd @see ats_scoped_mem For example, if you open a file descriptor and have to do other checks which result in having to call @c close in each @c if clause. @code int fd = open(...); if (X) { Log(...); close(fd); return -1; } if (Y) { Log(...); close(fd); return -1; } ... return fd; @endcode Change this to @code ats_scoped_fd fd(open(...); if (X) { Log(...) return; } // fd is closed upon return. if (Y) { Log(...) return; } // fd is closed upon return. fd.release(); // fd will not be automatically closed after this. return fd; @endcode The @a TRAITS class must have the following members. @code value_type; // Declaration type of the resource. RT initValue(); // Return canonical initialization value for RT. bool isValid(RT); // Check for validity. Can take a reference or const reference. void destroy(RT); // Cleanup. Can take a reference. @endcode @c isValid should return @c true if the resource instance is valid and @c false if it is not valid. @c initValue must be a constant value of @a RT such that @c isValid(INVALID) is @c false. This is used to initialize the object when the container is empty. @c destroy should perform cleanup on the object. @internal One might think the initialization value should be a constant but you can't initialize non-integral class constants (such as pointers) in C++ (you can in C++ eleventy but we can't require that). We can only hope the compiler is smart enough to optimize out functions returning constants. @internal For subclasses, you need to override the default constructor, value constructor, and assignment operator. This will be easier with C++ eleventy. */ template <typename TRAITS ///< Traits object. > class ats_scoped_resource { public: using Traits = TRAITS; ///< Make template arg available. using value_type = typename TRAITS::value_type; ///< Import value type. using self = ats_scoped_resource; ///< Self reference type. public: /// Default constructor - an empty container. ats_scoped_resource() : _r(Traits::initValue()) {} /// Construct with contained resource. explicit ats_scoped_resource(value_type rt) : _r(rt) {} /// Destructor. ~ats_scoped_resource() { this->clear(); } /** Remove and clean up any existing resource in this object, and return to a default constructed state. * */ void clear() { if (Traits::isValid(_r)) { Traits::destroy(_r); } _r = Traits::initValue(); } /// Automatic conversion to resource type. operator value_type() const { return _r; } /// Explicit conversion to resource type. /// @note Syntactic sugar for @c static_cast<value_type>(instance). Required when passing to var arg function /// as automatic conversion won't be done. value_type get() const { return _r; } /** Release resource from this container. After this call, the resource will @b not cleaned up when this container is destructed. @note Although direct assignment is forbidden due to the non-obvious semantics, a pointer can be moved (@b not copied) from one instance to another using this method. @code new_ptr = old_ptr.release(); @endcode This is by design. @return The no longer contained resource. */ value_type release() { value_type zret = _r; _r = Traits::initValue(); return zret; } /** Place a new resource @a rt in the container. Any resource currently contained is destroyed. This object becomes the owner of @a rt. @internal This is usually overridden in subclasses to get the return type adjusted. */ self & operator=(value_type rt) { this->clear(); _r = rt; return *this; } /// Equality. bool operator==(value_type rt) const { return _r == rt; } /// Inequality. bool operator!=(value_type rt) const { return _r != rt; } /// Test if the contained resource is valid. bool isValid() const { return Traits::isValid(_r); } protected: value_type _r; ///< Resource. private: ats_scoped_resource(self const &) = delete; ///< Copy constructor not permitted. self &operator=(self const &) = delete; ///< Self assignment not permitted. }; namespace detail { /** Traits for @c ats_scoped_resource for file descriptors. */ struct SCOPED_FD_TRAITS { using value_type = int; static int initValue() { return -1; } static bool isValid(int fd) { return fd >= 0; } static void destroy(int fd) { close(fd); } }; } // namespace detail /** File descriptor as a scoped resource. */ class ats_scoped_fd : public ats_scoped_resource<detail::SCOPED_FD_TRAITS> { public: using super_type = ats_scoped_resource<detail::SCOPED_FD_TRAITS>; ///< Super type. using self_type = ats_scoped_fd; ///< Self reference type. /// Default constructor - an empty container. ats_scoped_fd() : super_type() {} /// Construct with contained resource. explicit ats_scoped_fd(value_type rt) : super_type(rt) {} /// Move ownership constructor. ats_scoped_fd(self_type &&that) : super_type(that.release()) {} /** Place a new resource @a rt in the container. Any resource currently contained is destroyed. This object becomes the owner of @a rt. */ self_type & operator=(value_type rt) { super_type::operator=(rt); return *this; } /** Move the resource from @a that to @a this. If @a this has a resource, that resource is destroyed. This object becomes the owner of the resource in @a that. */ self_type & operator=(self_type &&that) { super_type::operator=(that.release()); return *this; } }; namespace detail { /** Traits for @c ats_scoped_resource for pointers from @c ats_malloc. */ template <typename T ///< Underlying type (not the pointer type). > struct SCOPED_MALLOC_TRAITS { using value_type = T *; static T * initValue() { return nullptr; } static bool isValid(T *t) { return nullptr != t; } static void destroy(T *t) { ats_free(t); } }; /// Traits for @c ats_scoped_resource for objects using @c new and @c delete. template <typename T ///< Underlying type - not the pointer type. > struct SCOPED_OBJECT_TRAITS { using value_type = T *; static T * initValue() { return nullptr; } static bool isValid(T *t) { return nullptr != t; } static void destroy(T *t) { delete t; } }; } // namespace detail /** Specialization of @c ats_scoped_resource for strings. This contains an allocated string that is cleaned up if not explicitly released. */ class ats_scoped_str : public ats_scoped_resource<detail::SCOPED_MALLOC_TRAITS<char>> { public: using super = ats_scoped_resource<detail::SCOPED_MALLOC_TRAITS<char>>; ///< Super type. using self_type = ats_scoped_str; ///< Self reference type. /** Default constructor. * Constructs an empty container. */ ats_scoped_str() = default; /** Construct an empty buffer of @a n bytes. * * @param n Size of the contained buffer. * * The memory is left uninitialized, presumably ready for a @c memcpy. */ explicit ats_scoped_str(size_t n) : super(static_cast<char *>(ats_malloc(n))) {} /** Construct with an existing buffer. * * @param s The string. * * This container takes ownership of the string memory. For this reason @a s must be independently * allocated, not part of a larger memory allocation. */ explicit ats_scoped_str(char *s) : super(s) {} /** Construct from a @c string_view. * * @param s The string to copy. * * The string in @a s is duplicated into this container. */ explicit ats_scoped_str(std::string_view s); /** Put an existing buffer in this container. * * @param s The string buffer. * @return @a this * * The container takes ownership of @a s. For this reason @a s must be independently allocated, * not part of a larger memory allocation. Any currently contained resource is destroyed. */ self_type &operator=(char *s); /** Assign from a @c string_view * * @param s The source string. * @return @a this * * The string data is duplicated into this object and guaranteed to be null terminated. Any currently * contained resource is destroyed. */ self_type &operator=(std::string_view s); }; inline ats_scoped_str::ats_scoped_str(std::string_view s) { if (!s.empty()) { *this = s; } } inline ats_scoped_str & ats_scoped_str::operator=(char *s) { super::operator=(s); return *this; } /** Specialization of @c ats_scoped_resource for pointers allocated with @c ats_malloc. */ template <typename T ///< Underlying (not pointer) type. > class ats_scoped_mem : public ats_scoped_resource<detail::SCOPED_MALLOC_TRAITS<T>> { public: using super = ats_scoped_resource<detail::SCOPED_MALLOC_TRAITS<T>>; ///< Super type. using self = ats_scoped_mem; ///< Self reference. self & operator=(T *ptr) { super::operator=(ptr); return *this; } }; /** Combine two strings as file paths. Trailing and leading separators for @a lhs and @a rhs respectively are handled to yield exactly one separator. @return A newly @x ats_malloc string of the combined paths. */ inline char * path_join(ats_scoped_str const &lhs, ats_scoped_str const &rhs) { size_t ln = strlen(lhs); size_t rn = strlen(rhs); const char *rptr = rhs; // May need to be modified. if (ln && lhs[ln - 1] == '/') { --ln; // drop trailing separator. } if (rn && *rptr == '/') { --rn, ++rptr; // drop leading separator. } ats_scoped_str x(ln + rn + 2); memcpy(x, lhs, ln); x[ln] = '/'; memcpy(x + ln + 1, rptr, rn); x[ln + rn + 1] = 0; // terminate string. return x.release(); } struct ats_unique_buf_deleter { void operator()(uint8_t *p) { ats_free(p); } }; using ats_unique_buf = std::unique_ptr<uint8_t[], ats_unique_buf_deleter>; ats_unique_buf ats_unique_malloc(size_t size);