tools/ebpf/trylock-stats/trylock-stats.bpf.c (146 lines of code) (raw):

/** @file eBPF program for trylock-stats Based on https://github.com/goldshtn/linux-tracing-workshop/blob/master/lockstat-solution.py @section license License Licensed to the Apache Software Foundation (ASF) under one or more contributor license agreements. See the NOTICE file distributed with this work for additional information regarding copyright ownership. The ASF licenses this file to you under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. */ #include <linux/ptrace.h> struct thread_mutex_key_t { u32 tid; u64 mtx; int lock_stack_id; }; struct thread_mutex_val_t { u64 wait_time_ns; u64 lock_time_ns; u64 enter_count; u64 fail_count; /// failure of try lock }; struct mutex_timestamp_t { u64 mtx; u64 timestamp; }; struct mutex_lock_time_key_t { u32 tid; u64 mtx; }; struct mutex_lock_time_val_t { u64 timestamp; int stack_id; }; // Mutex to the stack id which initialized that mutex BPF_HASH(init_stacks, u64, int); // Main info database about mutex and thread pairs BPF_HASH(locks, struct thread_mutex_key_t, struct thread_mutex_val_t); // PID to the mutex address and timestamp of when the wait started BPF_HASH(lock_start, u32, struct mutex_timestamp_t); // PID and mutex address to the timestamp of when the wait ended (mutex acquired) and the stack id BPF_HASH(lock_end, struct mutex_lock_time_key_t, struct mutex_lock_time_val_t); // Histogram of wait times BPF_HISTOGRAM(mutex_wait_hist, u64); // Histogram of hold times BPF_HISTOGRAM(mutex_lock_hist, u64); BPF_STACK_TRACE(stacks, 4096); int probe_mutex_init(struct pt_regs *ctx) { int stack_id = stacks.get_stackid(ctx, BPF_F_REUSE_STACKID | BPF_F_USER_STACK); u64 mutex_addr = PT_REGS_PARM1(ctx); init_stacks.update(&mutex_addr, &stack_id); return 0; } int probe_mutex_lock(struct pt_regs *ctx) { u64 now = bpf_ktime_get_ns(); u32 pid = bpf_get_current_pid_tgid(); struct mutex_timestamp_t val = {}; val.mtx = PT_REGS_PARM1(ctx); val.timestamp = now; lock_start.update(&pid, &val); return 0; } int probe_mutex_lock_return(struct pt_regs *ctx) { u64 now = bpf_ktime_get_ns(); u32 pid = bpf_get_current_pid_tgid(); struct mutex_timestamp_t *entry = lock_start.lookup(&pid); if (entry == NULL) { return 0; // Missed the entry } u64 wait_time = now - entry->timestamp; int stack_id = stacks.get_stackid(ctx, BPF_F_REUSE_STACKID | BPF_F_USER_STACK); // If pthread_mutex_lock() returned 0, we have the lock if (PT_REGS_RC(ctx) == 0) { // Record the lock acquisition timestamp so that we can read it when unlocking struct mutex_lock_time_key_t key = {}; key.mtx = entry->mtx; key.tid = pid; struct mutex_lock_time_val_t val = {}; val.timestamp = now; val.stack_id = stack_id; lock_end.update(&key, &val); } // Record the wait time for this mutex-tid-stack combination even if locking failed struct thread_mutex_key_t tm_key = {}; tm_key.mtx = entry->mtx; tm_key.tid = pid; tm_key.lock_stack_id = stack_id; struct thread_mutex_val_t *existing_tm_val, new_tm_val = {}; existing_tm_val = locks.lookup_or_init(&tm_key, &new_tm_val); existing_tm_val->wait_time_ns += wait_time; if (PT_REGS_RC(ctx) == 0) { existing_tm_val->enter_count += 1; } u64 mtx_slot = bpf_log2l(wait_time / 1000); mutex_wait_hist.increment(mtx_slot); lock_start.delete(&pid); return 0; } int probe_mutex_trylock_return(struct pt_regs *ctx) { u64 now = bpf_ktime_get_ns(); u32 pid = bpf_get_current_pid_tgid(); struct mutex_timestamp_t *entry = lock_start.lookup(&pid); if (entry == NULL) { return 0; // Missed the entry } int stack_id = stacks.get_stackid(ctx, BPF_F_REUSE_STACKID | BPF_F_USER_STACK); // If pthread_mutex_lock() returned 0, we have the lock if (PT_REGS_RC(ctx) == 0) { // Record the lock acquisition timestamp so that we can read it when unlocking struct mutex_lock_time_key_t key = {}; key.mtx = entry->mtx; key.tid = pid; struct mutex_lock_time_val_t val = {}; val.timestamp = now; val.stack_id = stack_id; lock_end.update(&key, &val); } // Record the wait time for this mutex-tid-stack combination even if locking failed struct thread_mutex_key_t tm_key = {}; tm_key.mtx = entry->mtx; tm_key.tid = pid; tm_key.lock_stack_id = stack_id; struct thread_mutex_val_t *existing_tm_val, new_tm_val = {}; existing_tm_val = locks.lookup_or_init(&tm_key, &new_tm_val); if (PT_REGS_RC(ctx) == 0) { existing_tm_val->enter_count += 1; } else { existing_tm_val->fail_count += 1; } lock_start.delete(&pid); return 0; } int probe_mutex_unlock(struct pt_regs *ctx) { u64 now = bpf_ktime_get_ns(); u64 mtx = PT_REGS_PARM1(ctx); u32 pid = bpf_get_current_pid_tgid(); struct mutex_lock_time_key_t lock_key = {}; lock_key.mtx = mtx; lock_key.tid = pid; struct mutex_lock_time_val_t *lock_val = lock_end.lookup(&lock_key); if (lock_val == NULL) { return 0; // Missed the lock of this mutex } u64 hold_time = now - lock_val->timestamp; struct thread_mutex_key_t tm_key = {}; tm_key.mtx = mtx; tm_key.tid = pid; tm_key.lock_stack_id = lock_val->stack_id; struct thread_mutex_val_t *existing_tm_val = locks.lookup(&tm_key); if (existing_tm_val == NULL) { return 0; // Couldn't find this record } existing_tm_val->lock_time_ns += hold_time; u64 slot = bpf_log2l(hold_time / 1000); mutex_lock_hist.increment(slot); lock_end.delete(&lock_key); return 0; }