src/runtime/cuda/cuda_module.cc (218 lines of code) (raw):
/*
* Licensed to the Apache Software Foundation (ASF) under one
* or more contributor license agreements. See the NOTICE file
* distributed with this work for additional information
* regarding copyright ownership. The ASF licenses this file
* to you under the Apache License, Version 2.0 (the
* "License"); you may not use this file except in compliance
* with the License. You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing,
* software distributed under the License is distributed on an
* "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
* KIND, either express or implied. See the License for the
* specific language governing permissions and limitations
* under the License.
*/
/*!
* \file cuda_module.cc
*/
#include "cuda_module.h"
#include <cuda.h>
#include <cuda_runtime.h>
#include <tvm/runtime/registry.h>
#include <array>
#include <mutex>
#include <string>
#include <unordered_map>
#include <vector>
#include "../file_utils.h"
#include "../meta_data.h"
#include "../pack_args.h"
#include "../thread_storage_scope.h"
#include "cuda_common.h"
namespace tvm {
namespace runtime {
// Module to support thread-safe multi-GPU execution.
// cuModule is a per-GPU module
// The runtime will contain a per-device module table
// The modules will be lazily loaded
class CUDAModuleNode : public runtime::ModuleNode {
public:
explicit CUDAModuleNode(std::string data, std::string fmt,
std::unordered_map<std::string, FunctionInfo> fmap,
std::string cuda_source)
: data_(data), fmt_(fmt), fmap_(fmap), cuda_source_(cuda_source) {
std::fill(module_.begin(), module_.end(), nullptr);
}
// destructor
~CUDAModuleNode() {
for (size_t i = 0; i < module_.size(); ++i) {
if (module_[i] != nullptr) {
CUDA_CALL(cudaSetDevice(static_cast<int>(i)));
CUDA_DRIVER_CALL(cuModuleUnload(module_[i]));
}
}
}
const char* type_key() const final { return "cuda"; }
/*! \brief Get the property of the runtime module .*/
int GetPropertyMask() const final {
return ModulePropertyMask::kBinarySerializable | ModulePropertyMask::kRunnable;
}
PackedFunc GetFunction(const String& name, const ObjectPtr<Object>& sptr_to_self) final;
void SaveToFile(const String& file_name, const String& format) final {
std::string fmt = GetFileFormat(file_name, format);
std::string meta_file = GetMetaFilePath(file_name);
if (fmt == "cu") {
ICHECK_NE(cuda_source_.length(), 0);
SaveMetaDataToFile(meta_file, fmap_);
SaveBinaryToFile(file_name, cuda_source_);
} else {
ICHECK_EQ(fmt, fmt_) << "Can only save to format=" << fmt_;
SaveMetaDataToFile(meta_file, fmap_);
SaveBinaryToFile(file_name, data_);
}
}
void SaveToBinary(dmlc::Stream* stream) final {
stream->Write(fmt_);
stream->Write(fmap_);
stream->Write(data_);
}
String GetSource(const String& format) final {
if (format == fmt_) return data_;
if (cuda_source_.length() != 0) {
return cuda_source_;
} else {
if (fmt_ == "ptx") return data_;
return "";
}
}
// get a CUfunction from primary context in device_id
CUfunction GetFunc(int device_id, const std::string& func_name) {
std::lock_guard<std::mutex> lock(mutex_);
// must recheck under the lock scope
if (module_[device_id] == nullptr) {
CUDA_DRIVER_CALL(cuModuleLoadData(&(module_[device_id]), data_.c_str()));
}
CUfunction func;
CUresult result = cuModuleGetFunction(&func, module_[device_id], func_name.c_str());
if (result != CUDA_SUCCESS) {
const char* msg;
cuGetErrorName(result, &msg);
LOG(FATAL) << "CUDAError: cuModuleGetFunction " << func_name << " failed with error: " << msg;
}
return func;
}
// get a global var from primary context in device_id
CUdeviceptr GetGlobal(int device_id, const std::string& global_name, size_t expect_nbytes) {
std::lock_guard<std::mutex> lock(mutex_);
// must recheck under the lock scope
if (module_[device_id] == nullptr) {
CUDA_DRIVER_CALL(cuModuleLoadData(&(module_[device_id]), data_.c_str()));
}
CUdeviceptr global;
size_t nbytes;
CUresult result = cuModuleGetGlobal(&global, &nbytes, module_[device_id], global_name.c_str());
ICHECK_EQ(nbytes, expect_nbytes);
if (result != CUDA_SUCCESS) {
const char* msg;
cuGetErrorName(result, &msg);
LOG(FATAL) << "CUDAError: cuModuleGetGlobal " << global_name << " failed with error: " << msg;
}
return global;
}
private:
// the binary data
std::string data_;
// The format
std::string fmt_;
// function information table.
std::unordered_map<std::string, FunctionInfo> fmap_;
// The cuda source.
std::string cuda_source_;
// the internal modules per GPU, to be lazily initialized.
std::array<CUmodule, kMaxNumGPUs> module_;
// internal mutex when updating the module
std::mutex mutex_;
};
// a wrapped function class to get packed func.
class CUDAWrappedFunc {
public:
// initialize the CUDA function.
void Init(CUDAModuleNode* m, ObjectPtr<Object> sptr, const std::string& func_name,
size_t num_void_args, const std::vector<std::string>& launch_param_tags) {
m_ = m;
sptr_ = sptr;
func_name_ = func_name;
std::fill(fcache_.begin(), fcache_.end(), nullptr);
launch_param_config_.Init(num_void_args, launch_param_tags);
}
// invoke the function with void arguments
void operator()(TVMArgs args, TVMRetValue* rv, void** void_args) const {
int device_id;
CUDA_CALL(cudaGetDevice(&device_id));
ThreadWorkLoad wl = launch_param_config_.Extract(args);
if (fcache_[device_id] == nullptr) {
fcache_[device_id] = m_->GetFunc(device_id, func_name_);
if (wl.dyn_shmem_size >= (48 << 10)) {
// Assumption: dyn_shmem_size doesn't change across different invocations of
// fcache_[device_id]
CUresult result = cuFuncSetAttribute(
fcache_[device_id], CU_FUNC_ATTRIBUTE_MAX_DYNAMIC_SHARED_SIZE_BYTES, wl.dyn_shmem_size);
if (result != CUDA_SUCCESS) {
LOG(FATAL) << "Failed to set the allowed dynamic shared memory size to "
<< wl.dyn_shmem_size;
}
}
}
CUstream strm = static_cast<CUstream>(CUDAThreadEntry::ThreadLocal()->stream);
CUresult result = cuLaunchKernel(fcache_[device_id], wl.grid_dim(0), wl.grid_dim(1),
wl.grid_dim(2), wl.block_dim(0), wl.block_dim(1),
wl.block_dim(2), wl.dyn_shmem_size, strm, void_args, nullptr);
if (result != CUDA_SUCCESS && result != CUDA_ERROR_DEINITIALIZED) {
const char* msg;
cuGetErrorName(result, &msg);
std::ostringstream os;
os << "CUDALaunch Error: " << msg << "\n"
<< " grid=(" << wl.grid_dim(0) << "," << wl.grid_dim(1) << "," << wl.grid_dim(2) << "), "
<< " block=(" << wl.block_dim(0) << "," << wl.block_dim(1) << "," << wl.block_dim(2)
<< ")\n";
std::string cuda = m_->GetSource("");
if (cuda.length() != 0) {
os << "// func_name=" << func_name_ << "\n"
<< "// CUDA Source\n"
<< "// -----------\n"
<< cuda;
}
LOG(FATAL) << os.str();
}
}
private:
// internal module
CUDAModuleNode* m_;
// the resource holder
ObjectPtr<Object> sptr_;
// The name of the function.
std::string func_name_;
// Device function cache per device.
// mark as mutable, to enable lazy initialization
mutable std::array<CUfunction, kMaxNumGPUs> fcache_;
// launch parameters configuration
LaunchParamConfig launch_param_config_;
};
class CUDAPrepGlobalBarrier {
public:
CUDAPrepGlobalBarrier(CUDAModuleNode* m, ObjectPtr<Object> sptr) : m_(m), sptr_(sptr) {
std::fill(pcache_.begin(), pcache_.end(), 0);
}
void operator()(const TVMArgs& args, TVMRetValue* rv) const {
int device_id;
CUDA_CALL(cudaGetDevice(&device_id));
if (pcache_[device_id] == 0) {
pcache_[device_id] =
m_->GetGlobal(device_id, runtime::symbol::tvm_global_barrier_state, sizeof(unsigned));
}
CUDA_DRIVER_CALL(cuMemsetD32(pcache_[device_id], 0, 1));
}
private:
// internal module
CUDAModuleNode* m_;
// the resource holder
ObjectPtr<Object> sptr_;
// mark as mutable, to enable lazy initialization
mutable std::array<CUdeviceptr, kMaxNumGPUs> pcache_;
};
PackedFunc CUDAModuleNode::GetFunction(const String& name, const ObjectPtr<Object>& sptr_to_self) {
ICHECK_EQ(sptr_to_self.get(), this);
ICHECK_NE(name, symbol::tvm_module_main) << "Device function do not have main";
if (name == symbol::tvm_prepare_global_barrier) {
return PackedFunc(CUDAPrepGlobalBarrier(this, sptr_to_self));
}
auto it = fmap_.find(name);
if (it == fmap_.end()) return PackedFunc();
const FunctionInfo& info = it->second;
CUDAWrappedFunc f;
f.Init(this, sptr_to_self, name, info.arg_types.size(), info.launch_param_tags);
return PackFuncVoidAddr(f, info.arg_types);
}
Module CUDAModuleCreate(std::string data, std::string fmt,
std::unordered_map<std::string, FunctionInfo> fmap,
std::string cuda_source) {
auto n = make_object<CUDAModuleNode>(data, fmt, fmap, cuda_source);
return Module(n);
}
// Load module from module.
Module CUDAModuleLoadFile(const std::string& file_name, const String& format) {
std::string data;
std::unordered_map<std::string, FunctionInfo> fmap;
std::string fmt = GetFileFormat(file_name, format);
std::string meta_file = GetMetaFilePath(file_name);
LoadBinaryFromFile(file_name, &data);
LoadMetaDataFromFile(meta_file, &fmap);
return CUDAModuleCreate(data, fmt, fmap, std::string());
}
Module CUDAModuleLoadBinary(void* strm) {
dmlc::Stream* stream = static_cast<dmlc::Stream*>(strm);
std::string data;
std::unordered_map<std::string, FunctionInfo> fmap;
std::string fmt;
stream->Read(&fmt);
stream->Read(&fmap);
stream->Read(&data);
return CUDAModuleCreate(data, fmt, fmap, std::string());
}
TVM_REGISTER_GLOBAL("runtime.module.loadfile_cubin").set_body_typed(CUDAModuleLoadFile);
TVM_REGISTER_GLOBAL("runtime.module.loadfile_ptx").set_body_typed(CUDAModuleLoadFile);
TVM_REGISTER_GLOBAL("runtime.module.loadbinary_cuda").set_body_typed(CUDAModuleLoadBinary);
} // namespace runtime
} // namespace tvm