void DFAContentModel::buildDFA()

in src/xercesc/validators/common/DFAContentModel.cpp [637:1338]


void DFAContentModel::buildDFA(ContentSpecNode* const curNode)
{
    unsigned int index;

    //
    //  The first step we need to take is to rewrite the content model using
    //  our CMNode objects, and in the process get rid of any repetition short
    //  cuts, converting them into '*' style repetitions or getting rid of
    //  repetitions altogether.
    //
    //  The conversions done are:
    //
    //  x+ -> (x|x*)
    //  x? -> (x|epsilon)
    //
    //  This is a relatively complex scenario. What is happening is that we
    //  create a top level binary node of which the special EOC value is set
    //  as the right side node. The the left side is set to the rewritten
    //  syntax tree. The source is the original content model info from the
    //  decl pool. The rewrite is done by buildSyntaxTree() which recurses the
    //  decl pool's content of the element and builds a new tree in the
    //  process.
    //
    //  Note that, during this operation, we set each non-epsilon leaf node's
    //  DFA state position and count the number of such leafs, which is left
    //  in the fLeafCount member.
    //
    fLeafCount=countLeafNodes(curNode);
    // Avoid integer overflow in below fLeafCount++ increment
    if (fLeafCount > (std::numeric_limits<unsigned int>::max() - 1))
        throw OutOfMemoryException();
    fEOCPos = fLeafCount++;

    // Avoid integer overflow in below memory allocation
    if (fLeafCount > (std::numeric_limits<size_t>::max() / sizeof(CMLeaf*)))
        throw OutOfMemoryException();

    //  We need to build an array of references to the non-epsilon
    //  leaf nodes. We will put them in the array according to their position values
    //
    fLeafList = (CMLeaf**) fMemoryManager->allocate(fLeafCount*sizeof(CMLeaf*)); //new CMLeaf*[fLeafCount];
    memset(fLeafList, 0, fLeafCount*sizeof(CMLeaf*));

    fLeafListType = (ContentSpecNode::NodeTypes*) fMemoryManager->allocate
    (
        fLeafCount * sizeof(ContentSpecNode::NodeTypes)
    ); //new ContentSpecNode::NodeTypes[fLeafCount];
    //
    //  And, moving onward... We now need to build the follow position sets
    //  for all the nodes. So we allocate an array of pointers to state sets,
    //  one for each leaf node (i.e. each significant DFA position.)
    //
    fFollowList = (CMStateSet**) fMemoryManager->allocate
    (
        fLeafCount * sizeof(CMStateSet*)
    ); //new CMStateSet*[fLeafCount];
    memset(fFollowList, 0, fLeafCount*sizeof(CMStateSet*));
    for (index = 0; index < fLeafCount; index++)
        fFollowList[index] = new (fMemoryManager) CMStateSet(fLeafCount, fMemoryManager);

    //  The buildSyntaxTree function will recursively iterate over the ContentSpecNode
    //  and build the CMNode hierarchy; it will also put every leaf node in the fLeafList
    //  array, then calculate the first and last position sets of each node. This is
    //  cached away in each of the nodes.
    //
    //  Along the way we also set the leaf count in each node as the maximum
    //  state count. They must know this in order to create their first/last
    //  position sets.
    //
    unsigned int counter=0;
    CMNode* nodeOrgContent = buildSyntaxTree(curNode, counter);
    //
    //  Check to see whether this content model can handle an empty content,
    //  which is something we need to optimize by looking now before we
    //  throw away the info that would tell us that.
    //
    //  If the left node of the head (the top level of the original content)
    //  is nullable, then its true.
    //
    fEmptyOk = nodeOrgContent->isNullable();

    //
    //  And handle specially the EOC node, which also must be numbered and
    //  counted as a non-epsilon leaf node. It could not be handled in the
    //  above tree build because it was created before all that started. We
    //  save the EOC position since its used during the DFA building loop.
    //
    CMLeaf* nodeEOC = new (fMemoryManager) CMLeaf
    (
        new (fMemoryManager) QName
        (
            XMLUni::fgZeroLenString
            , XMLUni::fgZeroLenString
            , XMLContentModel::gEOCFakeId
            , fMemoryManager
        )
        , fEOCPos
        , true
        , fLeafCount
        , fMemoryManager
    );
    fHeadNode = new (fMemoryManager) CMBinaryOp
    (
        ContentSpecNode::Sequence
        , nodeOrgContent
        , nodeEOC
        , fLeafCount
        , fMemoryManager
    );

    //  Put also the final EOC node in the leaf array
    fLeafList[counter] = new (fMemoryManager) CMLeaf
    (
        nodeEOC->getElement()
        , nodeEOC->getPosition()
        , fLeafCount
        , fMemoryManager
    );
    fLeafListType[counter] = ContentSpecNode::Leaf;

    //
    //  Now handle our top level. We use our left child's last pos set and our
    //  right child's first pos set, so get them now for convenience.
    //
    const CMStateSet& last  = nodeOrgContent->getLastPos();
    const CMStateSet& first = nodeEOC->getFirstPos();

    //
    //  Now, for every position which is in our left child's last set
    //  add all of the states in our right child's first set to the
    //  follow set for that position.
    //
    CMStateSetEnumerator enumLast(&last);
    while(enumLast.hasMoreElements())
    {
        XMLSize_t index=enumLast.nextElement();
        *fFollowList[index] |= first;
    }

    //
    //  And finally the big push... Now we build the DFA using all the states
    //  and the tree we've built up. First we set up the various data
    //  structures we are going to use while we do this.
    //
    //  First of all we need an array of unique element ids in our content
    //  model. For each transition table entry, we need a set of contiguous
    //  indices to represent the transitions for a particular input element.
    //  So we need to a zero based range of indexes that map to element types.
    //  This element map provides that mapping.
    //
    fElemMap = (QName**) fMemoryManager->allocate
    (
        fLeafCount * sizeof(QName*)
    ); //new QName*[fLeafCount];
    fElemMapType = (ContentSpecNode::NodeTypes*) fMemoryManager->allocate
    (
        fLeafCount * sizeof(ContentSpecNode::NodeTypes)
    ); //new ContentSpecNode::NodeTypes[fLeafCount];
    fElemMapSize = 0;

    Occurence** elemOccurenceMap=0;
    for (unsigned int outIndex = 0; outIndex < fLeafCount; outIndex++)
    {
        fElemMap[outIndex] = new (fMemoryManager) QName(fMemoryManager);

        if ( (fLeafListType[outIndex] & 0x0f) != ContentSpecNode::Leaf )
            if (!fLeafNameTypeVector)
                fLeafNameTypeVector = new (fMemoryManager) ContentLeafNameTypeVector(fMemoryManager);

        // Get the current leaf's element index
        CMLeaf* leaf=fLeafList[outIndex];
        const QName* element = leaf->getElement();
        const XMLCh* elementRawName = 0;
        if (fDTD && element)
            elementRawName = element->getRawName();

        // See if the current leaf node's element index is in the list
        unsigned int inIndex = 0;

        for (; inIndex < fElemMapSize; inIndex++)
        {
            const QName* inElem = fElemMap[inIndex];
            if (fDTD) {
                if (XMLString::equals(inElem->getRawName(), elementRawName)) {
                    break;
                }
            }
            else {
                if ((fElemMapType[inIndex] == fLeafListType[outIndex]) &&
                    (inElem->getURI() == element->getURI()) &&
                    (XMLString::equals(inElem->getLocalPart(), element->getLocalPart()))) {
                    break;
                }
            }
        }

        // If it was not in the list, then add it and bump the map size
        if (inIndex == fElemMapSize)
        {
            fElemMap[fElemMapSize]->setValues(*element);
            if(leaf->isRepeatableLeaf())
            {
                if (elemOccurenceMap == 0) {
                    elemOccurenceMap = (Occurence**)fMemoryManager->allocate(fLeafCount*sizeof(Occurence*));
                    memset(elemOccurenceMap, 0, fLeafCount*sizeof(Occurence*));
                }
                elemOccurenceMap[fElemMapSize] = new (fMemoryManager) Occurence(((CMRepeatingLeaf*)leaf)->getMinOccurs(), ((CMRepeatingLeaf*)leaf)->getMaxOccurs(), fElemMapSize);
            }
            fElemMapType[fElemMapSize] = fLeafListType[outIndex];
            ++fElemMapSize;
        }
    }

    // set up the fLeafNameTypeVector object if there is one.
    if (fLeafNameTypeVector) {
        fLeafNameTypeVector->setValues(fElemMap, fElemMapType, fElemMapSize);
    }

    /***
     * Optimization(Jan, 2001); We sort fLeafList according to
     * elemIndex which is *uniquely* associated to each leaf.
     * We are *assuming* that each element appears in at least one leaf.
     **/
    // don't forget to delete it
#ifdef OPTIMIZED_BUT_STILL_LINEAR_SEARCH
    int *leafSorter = (int*) fMemoryManager->allocate
    (
        (fLeafCount + fElemMapSize) * sizeof(int)
    ); //new int[fLeafCount + fElemMapSize];
    unsigned int fSortCount = 0;

    for (unsigned int elemIndex = 0; elemIndex < fElemMapSize; elemIndex++)
    {
        const QName* element = fElemMap[elemIndex];
        const XMLCh* elementRawName = 0;
        if (fDTD && element)
            elementRawName = element->getRawName();

        for (unsigned int leafIndex = 0; leafIndex < fLeafCount; leafIndex++)
        {
            const QName* leaf = fLeafList[leafIndex]->getElement();
            if (fDTD) {
                if (XMLString::equals(leaf->getRawName(), elementRawName)) {
                    leafSorter[fSortCount++] = leafIndex;
                }
            }
            else {
                if ((fElemMapType[elemIndex] == fLeafListType[leafIndex]) &&
                    (leaf->getURI() == element->getURI()) &&
                    (XMLString::equals(leaf->getLocalPart(), element->getLocalPart()))) {
                      leafSorter[fSortCount++] = leafIndex;
                }
            }
        }
        leafSorter[fSortCount++] = -1;
    }
#endif

    // instead of using a single array with -1 to separate elements, use a bidimensional map
    unsigned int** leafSorter = (unsigned int**)fMemoryManager->allocate(fElemMapSize * sizeof(unsigned int*));
    unsigned int* tmpSorter = (unsigned int*)fMemoryManager->allocate(fLeafCount * sizeof(unsigned int));
    for (unsigned int elemIndex = 0; elemIndex < fElemMapSize; elemIndex++)
    {
        const QName* element = fElemMap[elemIndex];
        const XMLCh* elementRawName = 0;
        if (fDTD && element)
            elementRawName = element->getRawName();

        unsigned int fSortCount=0;
        for (unsigned int leafIndex = 0; leafIndex < fLeafCount; leafIndex++)
        {
            const QName* leaf = fLeafList[leafIndex]->getElement();
            if (fDTD) {
                if (XMLString::equals(leaf->getRawName(), elementRawName)) {
                    tmpSorter[fSortCount++] = leafIndex;
                }
            }
            else {
                if ((fElemMapType[elemIndex] == fLeafListType[leafIndex]) &&
                    (leaf->getURI() == element->getURI()) &&
                    (XMLString::equals(leaf->getLocalPart(), element->getLocalPart()))) {
                      tmpSorter[fSortCount++] = leafIndex;
                }
            }
        }

        leafSorter[elemIndex]=(unsigned int*)fMemoryManager->allocate((fSortCount+1) * sizeof(unsigned int));
        leafSorter[elemIndex][0]=fSortCount;
        for (unsigned int index=0;index<fSortCount;index++)
            leafSorter[elemIndex][index+1]=tmpSorter[index];
    }
    fMemoryManager->deallocate(tmpSorter);

    //
    //  Next lets create some arrays, some that that hold transient info
    //  during the DFA build and some that are permament. These are kind of
    //  sticky since we cannot know how big they will get, but we don't want
    //  to use any collection type classes because of performance.
    //
    //  Basically they will probably be about fLeafCount*2 on average, but can
    //  be as large as 2^(fLeafCount*2), worst case. So we start with
    //  fLeafCount*4 as a middle ground. This will be very unlikely to ever
    //  have to expand though, it if does, the overhead will be somewhat ugly.
    //
    unsigned int curArraySize = fLeafCount * 4;
    CMStateSet** statesToDo = (CMStateSet**)
        fMemoryManager->allocate
        (
            curArraySize * sizeof(CMStateSet*)
        ); //new const CMStateSet*[curArraySize];
    fFinalStateFlags = (bool*) fMemoryManager->allocate
    (
        curArraySize * sizeof(bool)
    ); //new bool[curArraySize];
    fTransTable = (unsigned int**) fMemoryManager->allocate
    (
        curArraySize * sizeof(unsigned int*)
    ); //new unsigned int*[curArraySize];

    //
    //  Ok we start with the initial set as the first pos set of the head node
    //  (which is the seq node that holds the content model and the EOC node.)
    //
    CMStateSet* setT = new (fMemoryManager) CMStateSet(fHeadNode->getFirstPos());

    //
    // Note on memory leak: Bugzilla#2707:
    // ===================================
    // The CMBinary, pointed to by fHeadNode, shall be released by
    // deleted by itself.
    //
    // fLeafList[] maintains its **OWN** copy of CMLeaf to avoid double deletion
    // of CMLeaf.
    //

    delete fHeadNode;

    //
    //  Init our two state flags. Basically the unmarked state counter is
    //  always chasing the current state counter. When it catches up, that
    //  means we made a pass through that did not add any new states to the
    //  lists, at which time we are done. We could have used a expanding array
    //  of flags which we used to mark off states as we complete them, but
    //  this is easier though less readable maybe.
    //
    unsigned int unmarkedState = 0;
    unsigned int curState = 0;

    //
    //  Init the first transition table entry, and put the initial state
    //  into the states to do list, then bump the current state.
    //
    fTransTable[curState] = makeDefStateList();
    statesToDo[curState] = setT;
    curState++;

    //
    // the stateTable is an auxiliary means to fast
    // identification of new state created (instead
    // of sequential loop statesToDo to find out),
    // while the role that statesToDo plays remain unchanged.
    //
    RefHashTableOf<XMLInteger, CMStateSetHasher> *stateTable =
        new (fMemoryManager) RefHashTableOf<XMLInteger, CMStateSetHasher>
        (
            curArraySize
            , true
            , fMemoryManager
        );
    //stateTable->put((CMStateSet*)setT, new (fMemoryManager) XMLInteger(0));

    //
    //  Ok, almost done with the algorithm from hell... We now enter the
    //  loop where we go until the states done counter catches up with
    //  the states to do counter.
    //
    CMStateSet* newSet = 0;
    while (unmarkedState < curState)
    {
        //
        //  Get the next unmarked state out of the list of states to do.
        //  And get the associated transition table entry.
        //
        setT = statesToDo[unmarkedState];
        unsigned int* transEntry = fTransTable[unmarkedState];

        // Mark this one final if it contains the EOC state
        fFinalStateFlags[unmarkedState] = setT->getBit(fEOCPos);

        // Bump up the unmarked state count, marking this state done
        unmarkedState++;

#ifdef OPTIMIZED_BUT_STILL_LINEAR_SEARCH
        // Optimization(Jan, 2001)
        unsigned int sorterIndex = 0;
        // Optimization(Jan, 2001)
#endif

        // Loop through each possible input symbol in the element map
        for (unsigned int elemIndex = 0; elemIndex < fElemMapSize; elemIndex++)
        {
            //
            //  Build up a set of states which is the union of all of the
            //  follow sets of DFA positions that are in the current state. If
            //  we gave away the new set last time through then create a new
            //  one. Otherwise, zero out the existing one.
            //
            if (!newSet)
                newSet = new (fMemoryManager) CMStateSet
                (
                    fLeafCount
                    , fMemoryManager
                );
            else
                newSet->zeroBits();

#ifdef OBSOLETED
// unoptimized code
            for (unsigned int leafIndex = 0; leafIndex < fLeafCount; leafIndex++)
            {
                // If this leaf index (DFA position) is in the current set...
                if (setT->getBit(leafIndex))
                {
                    //
                    //  If this leaf is the current input symbol, then we want
                    //  to add its follow list to the set of states to transition
                    //  to from the current state.
                    //
                    const QName* leaf = fLeafList[leafIndex]->getElement();
                    const QName* element = fElemMap[elemIndex];
                    if (fDTD) {
                        if (XMLString::equals(leaf->getRawName(), element->getRawName())) {
                            *newSet |= *fFollowList[leafIndex];
                        }
                    }
                    else {
                        if ((leaf->getURI() == element->getURI()) &&
                            (XMLString::equals(leaf->getLocalPart(), element->getLocalPart()))) {
                            *newSet |= *fFollowList[leafIndex];
                        }
                    }
                }
            } // for leafIndex
#endif

#ifdef OPTIMIZED_BUT_STILL_LINEAR_SEARCH
            // Optimization(Jan, 2001)
            int leafIndex = leafSorter[sorterIndex++];

            while (leafIndex != -1)
            {
                // If this leaf index (DFA position) is in the current set...
                if (setT->getBit(leafIndex))
                {
                    //
                    //  If this leaf is the current input symbol, then we
                    //  want to add its follow list to the set of states to
                    //  transition to from the current state.
                    //
                    *newSet |= *fFollowList[leafIndex];
                }
                leafIndex = leafSorter[sorterIndex++];
            } // while (leafIndex != -1)
#endif

            unsigned int* fLeafIndexes=leafSorter[elemIndex];
            unsigned int fNumItems=fLeafIndexes[0];
            if(fNumItems!=0)
            {
                // The algorithm requires finding the leaf that is present both in the bitfield of the current state, and in the
                // list of places where the currently tested item can appear. When this occurs, the follow list of this parent item
                // is added to the bitfield representing the next state.
                // Both the bitfield and the list of places are sorted, so we can analyze them in two ways; either iterating over the
                // parent items, testing the bitfield for the existence of the parent (N times a constant Tb), or by iterating over the
                // bitfield (restricted to the range of the sorted list of places), using a binary search to locate the leaf in the
                // sorted list of places (M times log(N) testing operations Ts)
                // Assuming that the time to test a bit is roughly the same of the time needed to compute the average of two integers,
                // plus a couple of comparisons and additions, we compare N agains M*log(N) to decide which algorithm should be faster given
                // the two sets
                if(fNumItems <= setT->getBitCountInRange(fLeafIndexes[1], fLeafIndexes[fNumItems])*log((float)fNumItems))
                {
                    for(unsigned int i=1; i<=fNumItems; ++i)
                        if(setT->getBit(fLeafIndexes[i]))
                        {
                            //
                            //  If this leaf is the current input symbol, then we
                            //  want to add its follow list to the set of states to
                            //  transition to from the current state.
                            //
                            *newSet |= *fFollowList[ fLeafIndexes[i] ];
                        }
                }
                else
                {
                    // Further optimization: given that the bitfield enumerator returns the numbers in order,
                    // every time we raise the lower marker we know it will true also for the next bits, so
                    // the next binary search will not start from 1 but from this index
                    unsigned int lowIndex = 1;
                    // Start the enumerator from the first index in the sorted list of places,
                    // as nothing before that point will match
                    CMStateSetEnumerator enumBits(setT, fLeafIndexes[1]);
                    while(enumBits.hasMoreElements())
                    {
                        unsigned int bitIndex=enumBits.nextElement();
                        // if this leaf is greater than the last index in the sorted list of places,
                        // nothing can be found from now on, so get out of here
                        if(bitIndex > fLeafIndexes[fNumItems])
                            break;

                        // Check if this leaf index (DFA position) is in the current set
                        // (using binary search: the indexes are sorted)
                        unsigned int first=lowIndex,last=fNumItems,i;
                        while(first<=last)
                        {
                            i=(first+last)/2;
                            if(fLeafIndexes[i]>bitIndex)
                                last=i-1;
                            else if(fLeafIndexes[i]<bitIndex)
                                lowIndex=first=i+1;
                            else
                            {
                                //
                                //  If this leaf is the current input symbol, then we
                                //  want to add its follow list to the set of states to
                                //  transition to from the current state.
                                //
                                *newSet |= *fFollowList[bitIndex];
                                break;
                            }
                        }
                    }
                }
            }

            //
            //  If this new set is not empty, then see if its in the list
            //  of states to do. If not, then add it.
            //
            if (!newSet->isEmpty())
            {
                //
                //  Search the 'states to do' list to see if this new
                //  state set is already in there.
                //
                /***
                unsigned int stateIndex = 0;
                for (; stateIndex < curState; stateIndex++)
                {
                    if (*statesToDo[stateIndex] == *newSet)
                        break;
                }
                ***/

                XMLInteger *stateObj = stateTable->get(newSet);
                unsigned int stateIndex = (stateObj == 0 ? curState : stateObj->intValue());

                // If we did not find it, then add it
                if (stateIndex == curState)
                {
                    //
                    //  Put this new state into the states to do and init
                    //  a new entry at the same index in the transition
                    //  table.
                    //
                    statesToDo[curState] = newSet;
                    fTransTable[curState] = makeDefStateList();
                    stateTable->put
                    (
                        newSet
                        , new (fMemoryManager) XMLInteger(curState)
                    );

                    // We now have a new state to do so bump the count
                    curState++;

                    //
                    //  Null out the new set to indicate we adopted it. This
                    //  will cause the creation of a new set on the next time
                    //  around the loop.
                    //
                    newSet = 0;
                }

                //
                //  Now set this state in the transition table's entry for this
                //  element (using its index), with the DFA state we will move
                //  to from the current state when we see this input element.
                //
                transEntry[elemIndex] = stateIndex;

                // Expand the arrays if we're full
                if (curState == curArraySize)
                {
                    //
                    //  Yikes, we overflowed the initial array size, so we've
                    //  got to expand all of these arrays. So adjust up the
                    //  size by 50% and allocate new arrays.
                    //
                    const unsigned int newSize = (unsigned int)(curArraySize * 1.5);
                    CMStateSet** newToDo = (CMStateSet**)
                        fMemoryManager->allocate
                        (
                            newSize * sizeof(CMStateSet*)
                        ); //new const CMStateSet*[newSize];
                    bool* newFinalFlags = (bool*) fMemoryManager->allocate
                    (
                        newSize * sizeof(bool)
                    ); //new bool[newSize];
                    unsigned int** newTransTable = (unsigned int**)
                        fMemoryManager->allocate
                        (
                            newSize * sizeof(unsigned int*)
                        ); //new unsigned int*[newSize];

                    // Copy over all of the existing content
                    for (unsigned int expIndex = 0; expIndex < curArraySize; expIndex++)
                    {
                        newToDo[expIndex] = statesToDo[expIndex];
                        newFinalFlags[expIndex] = fFinalStateFlags[expIndex];
                        newTransTable[expIndex] = fTransTable[expIndex];
                    }

                    // Clean up the old stuff
                    fMemoryManager->deallocate(statesToDo); //delete [] statesToDo;
                    fMemoryManager->deallocate(fFinalStateFlags); //delete [] fFinalStateFlags;
                    fMemoryManager->deallocate(fTransTable); //delete [] fTransTable;

                    // Store the new array size and pointers
                    curArraySize = newSize;
                    statesToDo = newToDo;
                    fFinalStateFlags = newFinalFlags;
                    fTransTable = newTransTable;
                } //if (curState == curArraySize)
            } //if (!newSet->isEmpty())
        } // for elemIndex
    } //while

    // Store the current state count in the trans table size
    fTransTableSize = curState;

    //
    // Fill in the occurence information for each looping state
    // if we're using counters.
    //
    if (elemOccurenceMap != 0) {
        fCountingStates = (Occurence**)fMemoryManager->allocate(fTransTableSize*sizeof(Occurence*));
        memset(fCountingStates, 0, fTransTableSize*sizeof(Occurence*));
        for (unsigned int i = 0; i < fTransTableSize; ++i) {
            unsigned int * transitions = fTransTable[i];
            for (unsigned int j = 0; j < fElemMapSize; ++j) {
                if (i == transitions[j]) {
                    Occurence* old=elemOccurenceMap[j];
                    if(old!=0)
                        fCountingStates[i] = new (fMemoryManager) Occurence(old->minOccurs, old->maxOccurs, old->elemIndex);
                    break;
                }
            }
        }
        for (unsigned int j = 0; j < fLeafCount; ++j) {
            if(elemOccurenceMap[j]!=0)
                delete elemOccurenceMap[j];
        }
        fMemoryManager->deallocate(elemOccurenceMap);
    }

    // If the last temp set was not stored, then clean it up
    if (newSet)
        delete newSet;

    //
    //  Now we can clean up all of the temporary data that was needed during
    //  DFA build.
    //

    for (index = 0; index < fLeafCount; index++)
        delete fFollowList[index];
    fMemoryManager->deallocate(fFollowList); //delete [] fFollowList;
    fFollowList = NULL;

    //
    // removeAll() will delete all data, XMLInteger,
    // while the keys are to be deleted by the
    // deletion of statesToDo.
    //
    delete stateTable;

    for (index = 0; index < curState; index++)
        delete statesToDo[index];
    fMemoryManager->deallocate(statesToDo); //delete [] statesToDo;

    for (index = 0; index < fLeafCount; index++)
        delete fLeafList[index];
    fMemoryManager->deallocate(fLeafList); //delete [] fLeafList;
    fLeafList = NULL;

#ifdef OPTIMIZED_BUT_STILL_LINEAR_SEARCH
    fMemoryManager->deallocate(leafSorter); //delete [] leafSorter;
#endif
    for (index=0; index < fElemMapSize; index++)
        fMemoryManager->deallocate(leafSorter[index]);
    fMemoryManager->deallocate(leafSorter);
}