in depth_upsampling/models/mspf/blocks/multi_scale_depth.py [0:0]
def __init__(self, in_channels, out_channels, bias=False, kernel_size=1, stride=1, padding=0, dilation=1, activation=None, batch_norm=None):
super(Conv2D, self).__init__()
self.activation = activation
self.norm = batch_norm
self.conv = nn.Conv2d(
in_channels=in_channels,
out_channels=out_channels,
bias=bias,
kernel_size=kernel_size,
stride=stride,
padding=padding,
dilation=dilation)
if self.norm is not None:
self.norm = nn.BatchNorm2d
if self.activation is not None:
if self.activation == "relu":
self.activation = nn.ReLU()
else:
raise Exception(f"activation {self.activation} not supported")