in depth_upsampling/models/mspf/MultiscaleConvDepthEncoder.py [0:0]
def __init__(self, upsample_factor):
super().__init__()
self.scale = int(upsample_factor)
print("self.scale", self.scale)
activation = "relu"
batch_norm = None
self.output_channels = [16, 32, 32, 64, 64, 128]
self.conv_layers1 = nn.Sequential(
Conv2D(
1,
self.output_channels[0],
kernel_size=3,
activation=activation,
padding=1,
batch_norm=batch_norm,
),
Conv2D(
self.output_channels[0],
self.output_channels[0],
kernel_size=3,
activation=activation,
padding=1,
batch_norm=batch_norm,
))
self.encoder_conv_blocks = []
for i in range(1, 6):
conv_block = nn.Sequential(
Conv2D(
self.output_channels[i-1],
self.output_channels[i],
kernel_size=3,
activation=activation,
padding=1,
batch_norm=batch_norm,
),
Conv2D(
self.output_channels[i],
self.output_channels[i],
kernel_size=2,
activation=activation,
stride=2,
padding=0,
batch_norm=batch_norm,
))
setattr(self, f"conv_block_{i}", conv_block)
self.encoder_conv_blocks.append(conv_block)