in args.py [0:0]
def parse_structured_arguments():
parser = gen_args("Structured Sparsity Training")
parser.add_argument(
"--method",
type=str,
default="lcs_l",
help="Training method. One of lec, ns, us, lcs_l, lcs_p",
)
parser.add_argument(
"--width_factors_list",
type=lambda x: [float(w) for w in x.split(",")],
help="Desired width factors for NS. Ex: --width_factors_list 0.25,0.5,0.75,1.0",
)
parser.add_argument(
"--width_factor_limits",
type=lambda x: [float(w) for w in x.split(",")],
help="US width factor lower and upper bounds. Ex: --width_factor_limits 0.25,1.0",
)
parser.add_argument(
"--width_factor_samples",
type=int,
help="Number of width factor samples for US sandwich rule",
)
parser.add_argument(
"--eval_width_factors",
"--list",
type=lambda x: [float(w) for w in x.split(",")],
help="Width factors at which to evaluate model. Ex: --eval_width_factors 0.25,0.5,0.75,1.0",
)
return parser.parse_args()