in get_training_params.py [0:0]
def quantized_args_dict(args):
q_dict = gen_args_dict(args)
if args.bit_width is not None and args.method == "target_bit_width":
q_dict["num_bits"] = args.bit_width
if args.eval_bit_widths is not None and args.method != "lcs_l":
q_dict["eval_param_grid"] = args.eval_bit_widths
if args.bit_width_limits is not None and args.method in ("lcs_p", "lcs_l"):
min_bits, max_bits = [int(x) for x in args.bit_width_limits]
q_dict["min_bits"] = min_bits
q_dict["max_bits"] = max_bits
if args.method == "lcs_l":
range_len = max_bits - min_bits + 1
alpha_grid = [
np.floor(x * 1000) / 1000
for x in np.linspace(0, 1, range_len + 1)
][1:]
q_dict["alpha_grid"] = alpha_grid
elif args.method == "lcs_p":
if args.eval_bit_widths is None:
eval_param_grid = np.arange(min_bits, max_bits + 1)
q_dict["eval_param_grid"] = eval_param_grid
return q_dict