apple / learning-subspaces
File Size

The distribution of size of files (measured in lines of code).

Intro
  • File size measurements show the distribution of size of files.
  • Files are classified in four categories based on their size (lines of code): 1-100 (very small files), 101-200 (small files), 201-500 (medium size files), 501-1000 (long files), 1001+(very long files).
  • It is a good practice to keep files small. Long files may become "bloaters", code that have increased to such gargantuan proportions that they are hard to work with.
Learn more...
File Size Overall
  • There are 65 files with 5,703 lines of code.
    • 0 very long files (0 lines of code)
    • 1 long files (521 lines of code)
    • 2 medium size files (612 lines of codeclsfd_ftr_w_mp_ins)
    • 13 small files (1,941 lines of code)
    • 49 very small files (2,629 lines of code)
0% | 9% | 10% | 34% | 46%
Legend:
1001+
501-1000
201-500
101-200
1-100


explore: zoomable circles | sunburst | 3D view
File Size per Extension
1001+
501-1000
201-500
101-200
1-100
py0% | 9% | 10% | 34% | 46%
File Size per Logical Decomposition
primary
1001+
501-1000
201-500
101-200
1-100
models0% | 39% | 0% | 43% | 16%
viz0% | 0% | 89% | 0% | 10%
ROOT0% | 0% | 30% | 69% | 0%
trainers0% | 0% | 0% | 46% | 53%
analyze_results/tinyimagenet0% | 0% | 0% | 66% | 33%
analyze_results/cifar0% | 0% | 0% | 100% | 0%
experiment_configs/tinyimagenet0% | 0% | 0% | 0% | 100%
experiment_configs/cifar100% | 0% | 0% | 0% | 100%
experiment_configs/imagenet0% | 0% | 0% | 0% | 100%
data0% | 0% | 0% | 0% | 100%
Longest Files (Top 50)
File# lines# units
modules_gen.py
in models
521 40
utils.py
in viz
381 19
args.py
in root
231 2
main.py
in root
194 3
schedulers.py
in root
191 13
train_one_dim_subspaces.py
in trainers
188 5
train_simplexes.py
in trainers
165 5
eval_one_dim_subspaces_multigpu.py
in trainers
164 3
resnet.py
in models
163 12
builder.py
in models
156 7
tinyimagenetresnet.py
in models
143 10
utils.py
in root
134 9
modules.py
in models
117 12
one_dimensional_subspaces.py
in analyze_results/cifar
109 1
one_dimensional_subspaces.py
in analyze_results/tinyimagenet
109 1
linestats_swa.py
in trainers
108 3
ensemble.py
in trainers
98 3
simplex_ensembles.py
in trainers
92 3
eval_lines.py
in experiment_configs/tinyimagenet/one_dimensional_subspaces
79 -
eval_lines.py
in experiment_configs/imagenet/one_dimensional_subspaces
78 -
eval_lines_layerwise.py
in experiment_configs/imagenet/one_dimensional_subspaces
78 -
eval_curves.py
in experiment_configs/tinyimagenet/one_dimensional_subspaces
78 -
eval_lines_layerwise.py
in experiment_configs/tinyimagenet/one_dimensional_subspaces
78 -
eval_curves.py
in experiment_configs/cifar10/one_dimensional_subspaces
77 -
eval_lines.py
in experiment_configs/cifar10/one_dimensional_subspaces
77 -
eval_lines_layerwise.py
in experiment_configs/cifar10/one_dimensional_subspaces
77 -
cifar_resnet_dropout.py
in models
77 4
cifar_resnet.py
in models
75 4
eval_one_dim_subspaces.py
in trainers
75 3
imagenet.py
in data
73 1
default.py
in trainers
73 3
random_average_weights_perweight.py
in trainers
70 3
swa_endpoint_ensembles.py
in trainers
68 3
average_weights.py
in trainers
63 3
cifar.py
in data
59 1
eval_ensembles.py
in experiment_configs/imagenet/ensembles
59 2
eval_ensembles.py
in experiment_configs/tinyimagenet/ensembles
56 2
swag.py
in trainers
56 3
simplexes.py
in analyze_results/tinyimagenet
55 1
eval_ensembles.py
in experiment_configs/cifar10/ensembles
55 2
codegen.py
in models
55 -
random_average_weights_global.py
in trainers
50 3
random_average_weights_layerwise.py
in trainers
50 3
tinyimagenet.py
in data
45 1
config.py
in viz
44 3
train_lines.py
in experiment_configs/imagenet/one_dimensional_subspaces
43 -
train_lines_layerwise.py
in experiment_configs/imagenet/one_dimensional_subspaces
43 -
train_curves.py
in experiment_configs/tinyimagenet/one_dimensional_subspaces
42 -
train_lines.py
in experiment_configs/tinyimagenet/one_dimensional_subspaces
42 -
train_lines_layerwise.py
in experiment_configs/tinyimagenet/one_dimensional_subspaces
42 -
Files With Most Units (Top 20)
File# lines# units
modules_gen.py
in models
521 40
utils.py
in viz
381 19
schedulers.py
in root
191 13
modules.py
in models
117 12
resnet.py
in models
163 12
tinyimagenetresnet.py
in models
143 10
utils.py
in root
134 9
builder.py
in models
156 7
train_one_dim_subspaces.py
in trainers
188 5
train_simplexes.py
in trainers
165 5
cifar_resnet.py
in models
75 4
cifar_resnet_dropout.py
in models
77 4
main.py
in root
194 3
average_weights.py
in trainers
63 3
default.py
in trainers
73 3
ensemble.py
in trainers
98 3
eval_one_dim_subspaces.py
in trainers
75 3
eval_one_dim_subspaces_multigpu.py
in trainers
164 3
linestats_swa.py
in trainers
108 3
random_average_weights_global.py
in trainers
50 3
Files With Long Lines (Top 0)

There are 0 files with lines longer than 120 characters. In total, there are 0 long lines.

File# lines# units# long lines