in args.py [0:0]
def parse_arguments():
# Training settings
parser = argparse.ArgumentParser(description="Learning-Subspaces")
parser.add_argument(
"--num-models",
type=int,
default=1,
help="Number of models currently being considered for training ensembles or SWA",
)
parser.add_argument(
"--num-samples",
type=int,
default=1,
help="Number of samples drawn from the subspace for each batch.",
)
parser.add_argument(
"--optimizer", type=str, default="sgd", help="Which optimizer to use"
)
parser.add_argument(
"--batch-size",
type=int,
default=128,
metavar="N",
help="input batch size for training (default: 64)",
)
parser.add_argument(
"--test-batch-size",
type=int,
default=128,
metavar="N",
help="input batch size for testing (default: 128)",
)
parser.add_argument(
"--epochs",
type=int,
default=160,
metavar="N",
help="number of epochs to train (default: 100)",
)
parser.add_argument(
"--lr",
type=float,
default=0.1,
metavar="LR",
help="learning rate (default: 0.1)",
)
parser.add_argument(
"--momentum",
type=float,
default=0.9,
metavar="M",
help="Momentum (default: 0.9)",
)
parser.add_argument(
"--dropout", type=float, default=0.5,
)
parser.add_argument(
"--wd",
type=float,
default=0.0001,
metavar="M",
help="Weight decay (default: 0.0001)",
)
parser.add_argument(
"--seed",
type=int,
default=1,
metavar="S",
help="random seed (default: 1)",
)
parser.add_argument(
"--log-interval",
type=int,
default=10,
metavar="N",
help="how many batches to wait before logging training status",
)
parser.add_argument(
"--workers", type=int, default=4, help="how many cpu workers"
)
parser.add_argument(
"--output-size",
type=int,
default=10,
help="how many total neurons in last layer",
)
parser.add_argument(
"--name", type=str, default="default", help="Experiment id."
)
parser.add_argument(
"--data", type=str, help="Location to store data",
)
parser.add_argument(
"--log-dir", type=str, help="Location to logs/checkpoints",
)
parser.add_argument(
"--resume",
type=lambda x: [str(a) for a in x.split(",")],
default=None,
help="optionally resume",
)
parser.add_argument(
"--model-name", type=str, default=None, help="model name where required"
)
parser.add_argument(
"--ct", type=str, default="snow", help="Corruption type for ImageNet-C"
)
parser.add_argument(
"--sev", type=int, default=1, help="Corruption severity for ImageNet-C"
)
parser.add_argument(
"--width-mult", type=float, default=1.0, help="how wide is each layer"
)
parser.add_argument(
"--conv_type",
type=str,
default="StandardConv",
help="Type of conv layer",
)
parser.add_argument(
"--bn_type",
type=str,
default="StandardBN",
help="Type of batch norm layer.",
)
parser.add_argument(
"--conv-init",
type=str,
default="kaiming_normal",
help="How to initialize the conv weights.",
)
parser.add_argument(
"--baset", type=float, default=0.1,
)
parser.add_argument(
"--n",
type=int,
default=-1,
help="For simplexes -- number of endpoints used to define the simplex.",
)
parser.add_argument("--model", type=str, help="Type of model.")
parser.add_argument(
"--multigpu",
default=None,
type=lambda x: [int(a) for a in x.split(",")],
help="Which GPUs to use for multigpu training",
)
parser.add_argument(
"--save-epochs",
default=None,
type=lambda x: [int(a) for a in x.split(",")],
help="Which epochs to save",
)
parser.add_argument(
"--save-iters",
default=None,
type=lambda x: [int(a) for a in x.split(",")],
help="Which epochs to save",
)
parser.add_argument(
"--swa-save-epochs",
default=None,
type=lambda x: [int(a) for a in x.split(",")],
help="Which epochs to save for swa",
)
parser.add_argument(
"--mode", default="fan_in", help="Weight initialization mode"
)
parser.add_argument(
"--nonlinearity",
default="relu",
help="Nonlinearity used by initialization",
)
parser.add_argument("--set", type=str, help="Which dataset to use")
parser.add_argument(
"--trainer",
default=None,
type=str,
help="Which trainer to use, default in trainers/default.py",
)
parser.add_argument("--lr-policy", default=None, help="Scheduler to use")
parser.add_argument(
"--warmup-length", default=0, type=int,
)
parser.add_argument(
"--pretrained", action="store_true", default=False,
)
parser.add_argument(
"--save", action="store_true", default=False,
)
parser.add_argument(
"--save-data", action="store_true", default=False,
)
parser.add_argument(
"--trainswa", action="store_true", default=False,
)
parser.add_argument(
"--label-smoothing", type=float, default=None,
)
parser.add_argument(
"--label-noise", type=float, default=None,
)
parser.add_argument(
"--beta", type=float, default=-1,
)
parser.add_argument(
"--lamb", type=float, default=-1,
)
parser.add_argument(
"--swa-start", type=float, default=0.75,
)
parser.add_argument(
"--swa-lr", type=float, default=0.05,
)
parser.add_argument(
"--test-freq", type=int, default=None,
)
parser.add_argument(
"--update-bn", action="store_true", default=False,
)
parser.add_argument(
"--train-update-bn", action="store_true", default=False,
)
args = parser.parse_args()
return args