in data/cifar.py [0:0]
def __init__(self):
super(CIFAR10, self).__init__()
data_root = os.path.join(args.data, "cifar10")
use_cuda = torch.cuda.is_available()
# Data loading code
kwargs = (
{"num_workers": args.workers, "pin_memory": True}
if use_cuda
else {}
)
# mirrors open_lth: https://github.com/facebookresearch/open_lth
normalize = torchvision.transforms.Normalize(
[0.485, 0.456, 0.406], [0.229, 0.224, 0.225]
)
train_dataset = torchvision.datasets.CIFAR10(
root=data_root,
train=True,
download=True,
transform=transforms.Compose(
[
transforms.RandomCrop(32, padding=4),
transforms.RandomHorizontalFlip(),
transforms.ToTensor(),
normalize,
]
),
)
if args.label_noise is not None:
print(f"==> Using label noising proportion {args.label_noise}")
pfile = "cifar"
n = len(train_dataset.data)
if not os.path.isfile(pfile + ".npy"):
perm = np.random.permutation(n)
labels = np.random.randint(10, size=(n,))
np.save(pfile, perm)
np.save(pfile + "_labels", labels)
else:
perm = np.load(pfile + ".npy")
labels = np.load(pfile + "_labels.npy")
for k in range(int(n * args.label_noise)):
train_dataset.targets[perm[k]] = labels[k]
self.train_loader = torch.utils.data.DataLoader(
train_dataset, batch_size=args.batch_size, shuffle=True, **kwargs
)
test_dataset = torchvision.datasets.CIFAR10(
root=data_root,
train=False,
download=True,
transform=transforms.Compose([transforms.ToTensor(), normalize]),
)
self.val_loader = torch.utils.data.DataLoader(
test_dataset, batch_size=args.batch_size, shuffle=False, **kwargs
)