in experiment_configs/imagenet/ensembles/eval_ensembles.py [0:0]
def main():
train_epochs = 200
args.label_noise = 0.0
# TODO: change these paths -- this is an example.
args.data = "~/data"
args.log_dir = "learning-subspaces-results/imagenet/eval-ensemble"
if not os.path.exists(args.log_dir):
os.makedirs(args.log_dir)
for num_models in [1, 2, 3]:
to_try = samples(3, num_models)
for seed in range(len(to_try)):
next_try = to_try.pop()
args.seed = seed
args.workers = 24
args.wd = 0.00005
args.batch_size = 256
args.test_batch_size = 256
args.output_size = 1000
args.set = "ImageNet"
args.multigpu = [0, 1, 2, 3]
args.model = "WideResNet50_2"
args.conv_type = "StandardConv"
args.bn_type = "StandardBN"
args.conv_init = "kaiming_normal"
args.trainer = "ensemble"
args.epochs = 0
args.resume = [
f"learning-subspaces-results/imagenet/train-ensemble-members/"
f"id=base+ln={args.label_noise}+seed={c}"
f"+try=0/epoch_{train_epochs}_iter_{train_epochs * 5005}.pt"
for c in next_try
]
args.num_models = len(args.resume)
args.name = (
f"id=ensmeble+ln={args.label_noise}+epochs={train_epochs}"
f"+num_models={args.num_models}+seed={seed}"
)
args.save = False
args.save_data = True
args.pretrained = True
run()