in analyze_results/tinyimagenet/one_dimensional_subspaces.py [0:0]
def lvh_helper(ax, setxax=True, setyax=True):
one_dim_subspace_data = utils.read_csv_files(
[
f"learning-subspaces-results/tinyimagenet/eval-one-dimesnional-subspaces/results.csv",
],
["curr_acc1", "ensemble_acc", "m0_acc"],
)
ensemble_data = utils.read_csv_files(
[f"learning-subspaces-results/tinyimagenet/eval-ensemble/results.csv"],
["curr_acc1"],
)
xarr = [round(i * 0.05, 2) for i in range(0, 21)]
dh = utils.DataHolder(xarr, r"\alpha", "one-dim-subspaces")
utils.add_data_helper(
dh,
ax,
one_dim_subspace_data,
"alpha1",
"ensemble_acc",
id="lines",
**helper("ens_6"),
)
utils.add_data_helper(
dh,
ax,
one_dim_subspace_data,
"alpha1",
"curr_acc1",
id="lines",
**helper("t_6"),
)
utils.add_data_helper(
dh,
ax,
one_dim_subspace_data,
"alpha1",
"ensemble_acc",
id="lines-layerwise",
**helper("ens_4"),
)
utils.add_data_helper(
dh,
ax,
one_dim_subspace_data,
"alpha1",
"curr_acc1",
id="lines-layerwise",
**helper("t_4"),
)
utils.add_data_helper(
dh,
ax,
one_dim_subspace_data,
"alpha1",
"ensemble_acc",
id="curves",
**helper("ens_1"),
)
utils.add_data_helper(
dh,
ax,
one_dim_subspace_data,
"alpha1",
"curr_acc1",
id="curves",
**helper("t_1"),
)
baselines = utils.query(
ensemble_data,
x="num_models",
y="curr_acc1",
outlier=lambda x, y, d: False,
)
dh.add(
*utils.add_baseline(
ax, xarr, baselines[1], **helper("standard_training")
)
)
dh.add(
*utils.add_baseline(
ax, xarr, baselines[2], **helper("standard_ensemble")
)
)
if setxax:
ax.set_xlabel(r"$\alpha$", fontsize=fs_helper("xlabel"))
if setyax:
ax.set_ylabel("Accuracy", fontsize=fs_helper("ylabel"))
ax.set_title(f"ResNet18 (TinyImageNet)", fontsize=fs_helper("title"))
ax.set_ylim([0.625, 0.675])