modeling/utils/coref_utils.py [92:104]:
- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
	clusterIdx2spanList = {}
	all_MR = sorted(all_MR, key= lambda x: len(x[1].split()))
	for mention, reference in all_MR:
		if mention == "" or reference == "":
			continue
		cluster_idx = align_cluster(clusterIdx2spanList, mention, reference)

		# align cluster index as long as the span can be found in context or current utterance
		fill_in_cluster_info(cluster_idx, cluster_info[-1], context[-1], mention.split())
		for sent_idx, sent in enumerate(context): # consider reference in current utterance as well
			fill_in_cluster_info(cluster_idx, cluster_info[sent_idx], sent, reference.split())

	return cluster_info
- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -



modeling/utils/coref_utils.py [149:161]:
- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
	clusterIdx2spanList = {}
	all_MR = sorted(all_MR, key= lambda x: len(x[1].split()))
	for mention, reference in all_MR:
		if mention == "" or reference == "":
			continue
		cluster_idx = align_cluster(clusterIdx2spanList, mention, reference)

		# align cluster index as long as the span can be found in context or current utterance
		fill_in_cluster_info(cluster_idx, cluster_info[-1], context[-1], mention.split())
		for sent_idx, sent in enumerate(context): # consider reference in current utterance as well
			fill_in_cluster_info(cluster_idx, cluster_info[sent_idx], sent, reference.split())

	return cluster_info
- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -



