def forward()

in models/layers.py [0:0]


    def forward(self, input, z):
        batch, in_channel, height, width = input.shape

        gamma = self.modulation(z).view(batch, 1, in_channel, 1, 1)
        weight = self.scale * self.weight * gamma

        if self.demodulate:
            demod = torch.rsqrt(weight.pow(2).sum([2, 3, 4]) + 1e-8)
            weight = weight * demod.view(batch, self.out_channel, 1, 1, 1)

        weight = weight.view(batch * self.out_channel, in_channel, self.kernel_size, self.kernel_size)

        if self.upsample:
            input = input.view(1, batch * in_channel, height, width)
            weight = weight.view(batch, self.out_channel, in_channel, self.kernel_size, self.kernel_size)
            weight = weight.transpose(1, 2).reshape(
                batch * in_channel, self.out_channel, self.kernel_size, self.kernel_size
            )
            out = F.conv_transpose2d(input, weight, padding=0, stride=2, groups=batch)
            _, _, height, width = out.shape
            out = out.view(batch, self.out_channel, height, width)
            out = self.blur(out)
        elif self.downsample:
            input = self.blur(input)
            _, _, height, width = input.shape
            input = input.view(1, batch * in_channel, height, width)
            out = F.conv2d(input, weight, padding=0, stride=2, groups=batch)
            _, _, height, width = out.shape
            out = out.view(batch, self.out_channel, height, width)
        else:
            input = input.view(1, batch * in_channel, height, width)
            out = F.conv2d(input, weight, padding=self.padding, groups=batch)
            _, _, height, width = out.shape
            out = out.view(batch, self.out_channel, height, width)

        if hasattr(self, 'activate'):
            out = self.activate(out)

        if hasattr(self, 'bias'):
            out = out + self.bias

        return out