code/python/analysis/visualize_image_statistics.py [147:199]:
- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
object_volume_hist_log_n_bins    = 1000
object_volume_hist_log_base      = 10.0
object_volume_hist_log_min       = -6.0 # 0.000001
object_volume_hist_log_max       = 3.0  # 1000.0
object_volume_hist_log_bin_edges = logspace(object_volume_hist_log_min, object_volume_hist_log_max, object_volume_hist_log_n_bins+1, base=object_volume_hist_log_base)



#
# derived parameters used for visualization
#

# NORMAL
normal_hist_bin_centers_x_1d = normal_hist_bin_edges[:-1] + diff(normal_hist_bin_edges)/2.0
normal_hist_bin_centers_y_1d = normal_hist_bin_edges[:-1] + diff(normal_hist_bin_edges)/2.0

normal_hist_bin_centers_Y, normal_hist_bin_centers_X = meshgrid(normal_hist_bin_centers_x_1d, normal_hist_bin_centers_y_1d, indexing="ij")

normal_hist_bin_corners_Y_00, normal_hist_bin_corners_X_00 = meshgrid(normal_hist_bin_edges[:-1], normal_hist_bin_edges[:-1], indexing="ij")
normal_hist_bin_corners_Y_01, normal_hist_bin_corners_X_01 = meshgrid(normal_hist_bin_edges[:-1], normal_hist_bin_edges[1:], indexing="ij")
normal_hist_bin_corners_Y_10, normal_hist_bin_corners_X_10 = meshgrid(normal_hist_bin_edges[1:],  normal_hist_bin_edges[:-1], indexing="ij")
normal_hist_bin_corners_Y_11, normal_hist_bin_corners_X_11 = meshgrid(normal_hist_bin_edges[1:],  normal_hist_bin_edges[1:], indexing="ij")

normal_hist_bin_corners_X         = dstack((normal_hist_bin_corners_X_00, normal_hist_bin_corners_X_01, normal_hist_bin_corners_X_10, normal_hist_bin_corners_X_11))
normal_hist_bin_corners_Y         = dstack((normal_hist_bin_corners_Y_00, normal_hist_bin_corners_Y_01, normal_hist_bin_corners_Y_10, normal_hist_bin_corners_Y_11))
normal_hist_bin_corners_X_abs_min = np.min(np.abs(normal_hist_bin_corners_X), axis=2)
normal_hist_bin_corners_Y_abs_min = np.min(np.abs(normal_hist_bin_corners_Y), axis=2)

normal_X                                     = normal_hist_bin_corners_X_abs_min
normal_Y                                     = normal_hist_bin_corners_Y_abs_min
normal_X_sqr                                 = normal_X*normal_X
normal_Y_sqr                                 = normal_Y*normal_Y
normal_valid_mask                            = 1 - normal_X_sqr - normal_Y_sqr >= 0
normal_invalid_mask                          = logical_not(normal_valid_mask)
normal_Z                                     = zeros_like(normal_X)
normal_Z[normal_valid_mask]                  = np.sqrt(1 - normal_X_sqr[normal_valid_mask] - normal_Y_sqr[normal_valid_mask])
normal_Z[normal_invalid_mask]                = nan
normal_hist_bin_corners_abs_min_valid_mask   = normal_valid_mask
normal_hist_bin_corners_abs_min_invalid_mask = normal_invalid_mask

normal_X                                     = normal_hist_bin_centers_X
normal_Y                                     = normal_hist_bin_centers_Y
normal_X_sqr                                 = normal_X*normal_X
normal_Y_sqr                                 = normal_Y*normal_Y
normal_valid_mask                            = 1 - normal_X_sqr - normal_Y_sqr >= 0
normal_invalid_mask                          = logical_not(normal_valid_mask)
normal_Z                                     = zeros_like(normal_X)
normal_Z[normal_valid_mask]                  = np.sqrt(1 - normal_X_sqr[normal_valid_mask] - normal_Y_sqr[normal_valid_mask])
normal_Z[normal_invalid_mask]                = nan
normal_hist_bin_centers_valid_mask           = normal_valid_mask
normal_hist_bin_centers_invalid_mask         = normal_invalid_mask
normal_hist_bin_centers_Z                    = normal_Z
normal_hist_bin_centers_XYZ                  = dstack((normal_hist_bin_centers_X, normal_hist_bin_centers_Y, normal_hist_bin_centers_Z))
- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -



code/python/plots/plot_stats_scenes_objects_images.py [139:191]:
- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
object_volume_hist_log_n_bins    = 1000
object_volume_hist_log_base      = 10.0
object_volume_hist_log_min       = -6.0 # 0.000001
object_volume_hist_log_max       = 3.0  # 1000.0
object_volume_hist_log_bin_edges = logspace(object_volume_hist_log_min, object_volume_hist_log_max, object_volume_hist_log_n_bins+1, base=object_volume_hist_log_base)



#
# derived parameters used for visualization
#

# NORMAL
normal_hist_bin_centers_x_1d = normal_hist_bin_edges[:-1] + diff(normal_hist_bin_edges)/2.0
normal_hist_bin_centers_y_1d = normal_hist_bin_edges[:-1] + diff(normal_hist_bin_edges)/2.0

normal_hist_bin_centers_Y, normal_hist_bin_centers_X = meshgrid(normal_hist_bin_centers_x_1d, normal_hist_bin_centers_y_1d, indexing="ij")

normal_hist_bin_corners_Y_00, normal_hist_bin_corners_X_00 = meshgrid(normal_hist_bin_edges[:-1], normal_hist_bin_edges[:-1], indexing="ij")
normal_hist_bin_corners_Y_01, normal_hist_bin_corners_X_01 = meshgrid(normal_hist_bin_edges[:-1], normal_hist_bin_edges[1:], indexing="ij")
normal_hist_bin_corners_Y_10, normal_hist_bin_corners_X_10 = meshgrid(normal_hist_bin_edges[1:],  normal_hist_bin_edges[:-1], indexing="ij")
normal_hist_bin_corners_Y_11, normal_hist_bin_corners_X_11 = meshgrid(normal_hist_bin_edges[1:],  normal_hist_bin_edges[1:], indexing="ij")

normal_hist_bin_corners_X         = dstack((normal_hist_bin_corners_X_00, normal_hist_bin_corners_X_01, normal_hist_bin_corners_X_10, normal_hist_bin_corners_X_11))
normal_hist_bin_corners_Y         = dstack((normal_hist_bin_corners_Y_00, normal_hist_bin_corners_Y_01, normal_hist_bin_corners_Y_10, normal_hist_bin_corners_Y_11))
normal_hist_bin_corners_X_abs_min = np.min(np.abs(normal_hist_bin_corners_X), axis=2)
normal_hist_bin_corners_Y_abs_min = np.min(np.abs(normal_hist_bin_corners_Y), axis=2)

normal_X                                     = normal_hist_bin_corners_X_abs_min
normal_Y                                     = normal_hist_bin_corners_Y_abs_min
normal_X_sqr                                 = normal_X*normal_X
normal_Y_sqr                                 = normal_Y*normal_Y
normal_valid_mask                            = 1 - normal_X_sqr - normal_Y_sqr >= 0
normal_invalid_mask                          = logical_not(normal_valid_mask)
normal_Z                                     = zeros_like(normal_X)
normal_Z[normal_valid_mask]                  = np.sqrt(1 - normal_X_sqr[normal_valid_mask] - normal_Y_sqr[normal_valid_mask])
normal_Z[normal_invalid_mask]                = nan
normal_hist_bin_corners_abs_min_valid_mask   = normal_valid_mask
normal_hist_bin_corners_abs_min_invalid_mask = normal_invalid_mask

normal_X                                     = normal_hist_bin_centers_X
normal_Y                                     = normal_hist_bin_centers_Y
normal_X_sqr                                 = normal_X*normal_X
normal_Y_sqr                                 = normal_Y*normal_Y
normal_valid_mask                            = 1 - normal_X_sqr - normal_Y_sqr >= 0
normal_invalid_mask                          = logical_not(normal_valid_mask)
normal_Z                                     = zeros_like(normal_X)
normal_Z[normal_valid_mask]                  = np.sqrt(1 - normal_X_sqr[normal_valid_mask] - normal_Y_sqr[normal_valid_mask])
normal_Z[normal_invalid_mask]                = nan
normal_hist_bin_centers_valid_mask           = normal_valid_mask
normal_hist_bin_centers_invalid_mask         = normal_invalid_mask
normal_hist_bin_centers_Z                    = normal_Z
normal_hist_bin_centers_XYZ                  = dstack((normal_hist_bin_centers_X, normal_hist_bin_centers_Y, normal_hist_bin_centers_Z))
- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -



