def __init__()

in multiple_futures_prediction/train_ngsim.py [0:0]


  def __init__(self, log:bool=False,  # save checkpoints? 
        modes:int=2,                # how many latent modes
        use_cuda:bool=True,		
        encoder_size:int=16,        # encoder latent layer size
        decoder_size:int=16,        # decoder latent layer size        
        subsampling:int=2,          # factor subsample in time 
        hist_len_orig_hz:int=30,    # number of original history samples
        fut_len_orig_hz:int=50,     # number of original future samples
        dyn_embedding_size:int=32,  # dynamic embedding size
        input_embedding_size:int=32,        # input embedding size
        dec_nbr_enc_size:int=8,             # decoder neighbors encode size
        nbr_atten_embedding_size:int=80,    # neighborhood attention embedding size
        seed:int=1234,  
        remove_y_mean:bool=False,    # normalize by remove mean of the future trajectory
        use_gru:bool=True,           # GRUs instead of LSTMs
        bi_direc:bool=False,         # bidrectional
        self_norm:bool=False,        # normalize with respect to the current time 
        data_aug:bool=False,         # data augment
        use_context:bool=False,      # use contextual image as additional input
        nll:bool=True,               # negative log-liklihood loss
        use_forcing:int=0,          # teacher forcing
        iter_per_err:int=100,       # iterations to display errors
        iter_per_eval:int=1000,     # iterations to eval on validation set 
        pre_train_num_updates:int=200000,   # how many iterations for pretraining
        updates_div_by_10:int=100000,       # at what iteration to divide the learning rate by 10.0
        nbr_search_depth:int=10,            # how deep do we search for neighbors
        lr_init:float=0.001,                  # initial learning rate        
        min_lr:float=0.00005,                 # minimal learning rate
        iters_per_save:int=1500 ) -> None :         
        self.params = AttrDict(locals())