def forward()

in quant/binary/binary_conv.py [0:0]


    def forward(self, x: torch.Tensor) -> torch.Tensor:  # type: ignore
        """Forward pass of this layer."""
        x_q = self.x_approximate(self.clamping_fn(x))
        w_q = self.w_approximate(self.weight)
        return F.conv2d(
            input=x_q,
            weight=w_q,
            bias=self.bias,
            stride=self.stride,
            padding=self.padding,
            dilation=self.dilation,
            groups=self.groups,
        )