in quant/binary/binary_conv.py [0:0]
def forward(self, x: torch.Tensor) -> torch.Tensor: # type: ignore
"""Forward pass of this layer."""
x_q = self.x_approximate(self.clamping_fn(x))
w_q = self.w_approximate(self.weight)
return F.conv2d(
input=x_q,
weight=w_q,
bias=self.bias,
stride=self.stride,
padding=self.padding,
dilation=self.dilation,
groups=self.groups,
)