def get_train_loader()

in quant/data/data_loaders.py [0:0]


    def get_train_loader(self) -> DataLoader:
        """Get a PyTorch data loader for the training set."""
        transform_train = transforms.Compose(
            [
                transforms.RandomCrop(32, padding=4),
                transforms.RandomHorizontalFlip(),
                transforms.ToTensor(),
                transforms.Normalize(self.mean_val, self.std_val),
            ]
        )

        dataset_train = datasets.CIFAR100(
            root=self.dataset_path,
            train=True,
            download=self.download,
            transform=transform_train,
        )

        train_loader = torch.utils.data.DataLoader(
            dataset_train,
            batch_size=self.train_batch_size,
            shuffle=True,
            num_workers=self.workers,
            pin_memory=True,
        )

        return train_loader