def get_train_loader()

in quant/data/data_loaders.py [0:0]


    def get_train_loader(self) -> DataLoader:
        """Get a PyTorch data loader for the training set."""
        train_dir = Path(self.dataset_path) / self.train_split
        train_dataset = datasets.ImageFolder(
            train_dir,
            transforms.Compose(
                [
                    transforms.RandomResizedCrop(224),
                    transforms.RandomHorizontalFlip(),
                    transforms.ColorJitter(0.4, 0.4, 0.4),
                    transforms.ToTensor(),
                    self.normalize,
                ]
            ),
        )

        train_loader = torch.utils.data.DataLoader(
            train_dataset,
            batch_size=self.train_batch_size,
            shuffle=True,
            num_workers=self.workers,
            pin_memory=True,
        )

        return train_loader