def forward()

in quant/binary/weight_quantization.py [0:0]


    def forward(self, x: torch.Tensor) -> torch.Tensor:  # type: ignore
        """Forward pass of greedy foldable quantizer with `k`-bits."""
        if self.training:
            vs, x_q = quantization.quantizer_gf(x, k=self.k)
            for i in range(self.k):
                getattr(self, f'v{i+1}').copy_(vs[i])
        else:
            vs = [getattr(self, f'v{i+1}') for i in range(self.k)]
            _, x_q = quantization.quantizer_gf(x, k=self.k, vs=vs)
        return x_q