def get_batch()

in rlkit/torch/vae/vae_trainer.py [0:0]


    def get_batch(self, train=True, epoch=None):
        if self.use_parallel_dataloading:
            if not train:
                dataloader = self.test_dataloader
            else:
                dataloader = self.train_dataloader
            samples = next(dataloader).to(ptu.device)
            return samples

        dataset = self.train_dataset if train else self.test_dataset
        skew = False
        if epoch is not None:
            skew = (self.start_skew_epoch < epoch)
        if train and self.skew_dataset and skew:
            probs = self._train_weights / np.sum(self._train_weights)
            ind = np.random.choice(
                len(probs),
                self.batch_size,
                p=probs,
            )
        else:
            ind = np.random.randint(0, len(dataset), self.batch_size)
        samples = normalize_image(dataset[ind, :])
        if self.normalize:
            samples = ((samples - self.train_data_mean) + 1) / 2
        if self.background_subtract:
            samples = samples - self.train_data_mean
        return ptu.from_numpy(samples)