in run.py [0:0]
def load_model(question_generator):
"""
Load model
:param question_generator: Class containing all question generator modules. Defined in question_generator_model.py
:return: model defition file
"""
# Build the model
if question_generator.datasets.use_keyword:
model = question_generator.build_keyword_model()
elif 'glove' in question_generator.datasets.embedding_file:
model = question_generator.build_glove_model()
elif 'elmo' in question_generator.datasets.embedding_file:
model = question_generator.build_elmo_model()
elif 'bert' in question_generator.datasets.embedding_file:
bert_path = "https://tfhub.dev/google/bert_uncased_L-12_H-768_A-12/1"
# Instantiate tokenizer
question_generator.tokenizer = create_tokenizer_from_hub_module(bert_path)
model = question_generator.build_bert_model()
else:
logging.error('Embedding model not found')
exit(-1)
return model