public/js/datacat/GLmol.js (594 lines of code) (raw):

/* GLmol - Molecular Viewer on WebGL/Javascript (0.47) (C) Copyright 2011-2012, biochem_fan License: dual license of MIT or LGPL3 Contributors: Robert Hanson for parseXYZ, deferred instantiation This program uses Three.js https://github.com/mrdoob/three.js Copyright (c) 2010-2012 three.js Authors. All rights reserved. jQuery http://jquery.org/ Copyright (c) 2011 John Resig */ // Workaround for Intel GMA series (gl_FrontFacing causes compilation error) THREE.ShaderLib.lambert.fragmentShader = THREE.ShaderLib.lambert.fragmentShader.replace("gl_FrontFacing", "true"); THREE.ShaderLib.lambert.vertexShader = THREE.ShaderLib.lambert.vertexShader.replace(/\}$/, "#ifdef DOUBLE_SIDED\n if (transformedNormal.z < 0.0) vLightFront = vLightBack;\n #endif\n }"); var TV3 = THREE.Vector3, TF3 = THREE.Face3, TCo = THREE.Color; THREE.Geometry.prototype.colorAll = function (color) { for (var i = 0; i < this.faces.length; i++) { this.faces[i].color = color; } }; THREE.Matrix4.prototype.isIdentity = function() { for (var i = 0; i < 4; i++) for (var j = 0; j < 4; j++) if (this.elements[i * 4 + j] != (i == j) ? 1 : 0) return false; return true; }; var GLmol = (function() { function GLmol(id, suppressAutoload) { if (id) this.create(id, suppressAutoload); return true; } GLmol.prototype.create = function(id, suppressAutoload) { this.Nucleotides = [' G', ' A', ' T', ' C', ' U', ' DG', ' DA', ' DT', ' DC', ' DU']; this.ElementColors = {"H": 0xCCCCCC, "C": 0xAAAAAA, "O": 0xCC0000, "N": 0x0000CC, "S": 0xCCCC00, "P": 0x6622CC, "F": 0x00CC00, "CL": 0x00CC00, "BR": 0x882200, "I": 0x6600AA, "FE": 0xCC6600, "CA": 0x8888AA}; // Reference: A. Bondi, J. Phys. Chem., 1964, 68, 441. this.vdwRadii = {"H": 1.2, "Li": 1.82, "Na": 2.27, "K": 2.75, "C": 1.7, "N": 1.55, "O": 1.52, "F": 1.47, "P": 1.80, "S": 1.80, "CL": 1.75, "BR": 1.85, "SE": 1.90, "ZN": 1.39, "CU": 1.4, "NI": 1.63}; this.id = id; this.aaScale = 1; // or 2 this.container = $('#' + this.id); this.WIDTH = this.container.width() * this.aaScale, this.HEIGHT = this.container.height() * this.aaScale; this.ASPECT = this.WIDTH / this.HEIGHT; this.NEAR = 1, FAR = 800; this.CAMERA_Z = -150; this.renderer = new THREE.WebGLRenderer({antialias: true}); this.renderer.sortObjects = false; // hopefully improve performance // 'antialias: true' now works in Firefox too! // setting this.aaScale = 2 will enable antialias in older Firefox but GPU load increases. this.renderer.domElement.style.width = "100%"; this.renderer.domElement.style.height = "100%"; this.container.append(this.renderer.domElement); this.renderer.setSize(this.WIDTH, this.HEIGHT); this.camera = new THREE.PerspectiveCamera(20, this.ASPECT, 1, 800); // will be updated anyway this.camera.position = new TV3(0, 0, this.CAMERA_Z); this.camera.lookAt(new TV3(0, 0, 0)); this.perspectiveCamera = this.camera; this.orthoscopicCamera = new THREE.OrthographicCamera(); this.orthoscopicCamera.position.z = this.CAMERA_Z; this.orthoscopicCamera.lookAt(new TV3(0, 0, 0)); var self = this; $(window).resize(function() { // only window can capture resize event self.WIDTH = self.container.width() * self.aaScale; self.HEIGHT = self.container.height() * self.aaScale; self.ASPECT = self.WIDTH / self.HEIGHT; self.renderer.setSize(self.WIDTH, self.HEIGHT); self.camera.aspect = self.ASPECT; self.camera.updateProjectionMatrix(); self.show(); }); this.scene = null; this.rotationGroup = null; // which contains modelGroup this.modelGroup = null; this.bgColor = 0x000000; this.fov = 20; this.fogStart = 0.4; this.slabNear = -50; // relative to the center of rotationGroup this.slabFar = +50; // Default values this.sphereRadius = 1.5; this.cylinderRadius = 0.4; this.lineWidth = 1.5 * this.aaScale; this.curveWidth = 3 * this.aaScale; this.defaultColor = 0xCCCCCC; this.sphereQuality = 16; //16; this.cylinderQuality = 16; //8; this.axisDIV = 5; // 3 still gives acceptable quality this.strandDIV = 6; this.nucleicAcidStrandDIV = 4; this.tubeDIV = 8; this.coilWidth = 0.3; this.helixSheetWidth = 1.3; this.nucleicAcidWidth = 0.8; this.thickness = 0.4; // UI variables this.cq = new THREE.Quaternion(1, 0, 0, 0); this.dq = new THREE.Quaternion(1, 0, 0, 0); this.isDragging = false; this.mouseStartX = 0; this.mouseStartY = 0; this.currentModelPos = 0; this.cz = 0; this.enableMouse(); if (suppressAutoload) return; this.loadMolecule(); } GLmol.prototype.setupLights = function(scene) { var directionalLight = new THREE.DirectionalLight(0xFFFFFF); directionalLight.position = new TV3(0.2, 0.2, -1).normalize(); directionalLight.intensity = 1.2; scene.add(directionalLight); var ambientLight = new THREE.AmbientLight(0x202020); scene.add(ambientLight); }; GLmol.prototype.parseSDF = function(str) { var atoms = this.atoms; var protein = this.protein; var lines = str.split("\n"); if (lines.length < 4) return; var atomCount = parseInt(lines[3].substr(0, 3)); if (isNaN(atomCount) || atomCount <= 0) return; var bondCount = parseInt(lines[3].substr(3, 3)); var offset = 4; if (lines.length < 4 + atomCount + bondCount) return; for (var i = 1; i <= atomCount; i++) { var line = lines[offset]; offset++; var atom = {}; atom.serial = i; atom.x = parseFloat(line.substr(0, 10)); atom.y = parseFloat(line.substr(10, 10)); atom.z = parseFloat(line.substr(20, 10)); atom.hetflag = true; atom.atom = atom.elem = line.substr(31, 3).replace(/ /g, ""); atom.bonds = []; atom.bondOrder = []; atoms[i] = atom; } for (i = 1; i <= bondCount; i++) { var line = lines[offset]; offset++; var from = parseInt(line.substr(0, 3)); var to = parseInt(line.substr(3, 3)); var order = parseInt(line.substr(6, 3)); atoms[from].bonds.push(to); atoms[from].bondOrder.push(order); atoms[to].bonds.push(from); atoms[to].bondOrder.push(order); } protein.smallMolecule = true; return true; }; GLmol.prototype.parseXYZ = function(str) { var atoms = this.atoms; var protein = this.protein; var lines = str.split("\n"); if (lines.length < 3) return; var atomCount = parseInt(lines[0].substr(0, 3)); if (isNaN(atomCount) || atomCount <= 0) return; if (lines.length < atomCount + 2) return; var offset = 2; for (var i = 1; i <= atomCount; i++) { var line = lines[offset++]; var tokens = line.replace(/^\s+/, "").replace(/\s+/g," ").split(" "); console.log(tokens); var atom = {}; atom.serial = i; atom.atom = atom.elem = tokens[0]; atom.x = parseFloat(tokens[1]); atom.y = parseFloat(tokens[2]); atom.z = parseFloat(tokens[3]); atom.hetflag = true; atom.bonds = []; atom.bondOrder = []; atoms[i] = atom; } for (var i = 1; i < atomCount; i++) // hopefully XYZ is small enough for (var j = i + 1; j <= atomCount; j++) if (this.isConnected(atoms[i], atoms[j])) { atoms[i].bonds.push(j); atoms[i].bondOrder.push(1); atoms[j].bonds.push(i); atoms[j].bondOrder.push(1); } protein.smallMolecule = true; return true; }; GLmol.prototype.parsePDB2 = function(str) { var atoms = this.atoms; var protein = this.protein; var molID; var atoms_cnt = 0; lines = str.split("\n"); for (var i = 0; i < lines.length; i++) { line = lines[i].replace(/^\s*/, ''); // remove indent var recordName = line.substr(0, 6); if (recordName == 'ATOM ' || recordName == 'HETATM') { var atom, resn, chain, resi, x, y, z, hetflag, elem, serial, altLoc, b; altLoc = line.substr(16, 1); if (altLoc != ' ' && altLoc != 'A') continue; // FIXME: ad hoc serial = parseInt(line.substr(6, 5)); atom = line.substr(12, 4).replace(/ /g, ""); resn = line.substr(17, 3); chain = line.substr(21, 1); resi = parseInt(line.substr(22, 5)); x = parseFloat(line.substr(30, 8)); y = parseFloat(line.substr(38, 8)); z = parseFloat(line.substr(46, 8)); b = parseFloat(line.substr(60, 8)); elem = line.substr(76, 2).replace(/ /g, ""); if (elem == '') { // for some incorrect PDB files elem = line.substr(12, 4).replace(/ /g,""); } if (line[0] == 'H') hetflag = true; else hetflag = false; atoms[serial] = {'resn': resn, 'x': x, 'y': y, 'z': z, 'elem': elem, 'hetflag': hetflag, 'chain': chain, 'resi': resi, 'serial': serial, 'atom': atom, 'bonds': [], 'ss': 'c', 'color': 0xFFFFFF, 'bonds': [], 'bondOrder': [], 'b': b /*', altLoc': altLoc*/}; } else if (recordName == 'SHEET ') { var startChain = line.substr(21, 1); var startResi = parseInt(line.substr(22, 4)); var endChain = line.substr(32, 1); var endResi = parseInt(line.substr(33, 4)); protein.sheet.push([startChain, startResi, endChain, endResi]); } else if (recordName == 'CONECT') { // MEMO: We don't have to parse SSBOND, LINK because both are also // described in CONECT. But what about 2JYT??? var from = parseInt(line.substr(6, 5)); for (var j = 0; j < 4; j++) { var to = parseInt(line.substr([11, 16, 21, 26][j], 5)); if (isNaN(to)) continue; if (atoms[from] != undefined) { atoms[from].bonds.push(to); atoms[from].bondOrder.push(1); } } } else if (recordName == 'HELIX ') { var startChain = line.substr(19, 1); var startResi = parseInt(line.substr(21, 4)); var endChain = line.substr(31, 1); var endResi = parseInt(line.substr(33, 4)); protein.helix.push([startChain, startResi, endChain, endResi]); } else if (recordName == 'CRYST1') { protein.a = parseFloat(line.substr(6, 9)); protein.b = parseFloat(line.substr(15, 9)); protein.c = parseFloat(line.substr(24, 9)); protein.alpha = parseFloat(line.substr(33, 7)); protein.beta = parseFloat(line.substr(40, 7)); protein.gamma = parseFloat(line.substr(47, 7)); protein.spacegroup = line.substr(55, 11); this.defineCell(); } else if (recordName == 'REMARK') { var type = parseInt(line.substr(7, 3)); if (type == 290 && line.substr(13, 5) == 'SMTRY') { var n = parseInt(line[18]) - 1; var m = parseInt(line.substr(21, 2)); if (protein.symMat[m] == undefined) protein.symMat[m] = new THREE.Matrix4().identity(); protein.symMat[m].elements[n] = parseFloat(line.substr(24, 9)); protein.symMat[m].elements[n + 4] = parseFloat(line.substr(34, 9)); protein.symMat[m].elements[n + 8] = parseFloat(line.substr(44, 9)); protein.symMat[m].elements[n + 12] = parseFloat(line.substr(54, 10)); } else if (type == 350 && line.substr(13, 5) == 'BIOMT') { var n = parseInt(line[18]) - 1; var m = parseInt(line.substr(21, 2)); if (protein.biomtMatrices[m] == undefined) protein.biomtMatrices[m] = new THREE.Matrix4().identity(); protein.biomtMatrices[m].elements[n] = parseFloat(line.substr(24, 9)); protein.biomtMatrices[m].elements[n + 4] = parseFloat(line.substr(34, 9)); protein.biomtMatrices[m].elements[n + 8] = parseFloat(line.substr(44, 9)); protein.biomtMatrices[m].elements[n + 12] = parseFloat(line.substr(54, 10)); } else if (type == 350 && line.substr(11, 11) == 'BIOMOLECULE') { protein.biomtMatrices = []; protein.biomtChains = ''; } else if (type == 350 && line.substr(34, 6) == 'CHAINS') { protein.biomtChains += line.substr(41, 40); } } else if (recordName == 'HEADER') { protein.pdbID = line.substr(62, 4); } else if (recordName == 'TITLE ') { if (protein.title == undefined) protein.title = ""; protein.title += line.substr(10, 70) + "\n"; // CHECK: why 60 is not enough??? } else if (recordName == 'COMPND') { // TODO: Implement me! } } // Assign secondary structures for (i = 0; i < atoms.length; i++) { atom = atoms[i]; if (atom == undefined) continue; var found = false; // MEMO: Can start chain and end chain differ? for (j = 0; j < protein.sheet.length; j++) { if (atom.chain != protein.sheet[j][0]) continue; if (atom.resi < protein.sheet[j][1]) continue; if (atom.resi > protein.sheet[j][3]) continue; atom.ss = 's'; if (atom.resi == protein.sheet[j][1]) atom.ssbegin = true; if (atom.resi == protein.sheet[j][3]) atom.ssend = true; } for (j = 0; j < protein.helix.length; j++) { if (atom.chain != protein.helix[j][0]) continue; if (atom.resi < protein.helix[j][1]) continue; if (atom.resi > protein.helix[j][3]) continue; atom.ss = 'h'; if (atom.resi == protein.helix[j][1]) atom.ssbegin = true; else if (atom.resi == protein.helix[j][3]) atom.ssend = true; } } protein.smallMolecule = false; return true; }; // Catmull-Rom subdivision GLmol.prototype.subdivide = function(_points, DIV) { // points as Vector3 var ret = []; var points = _points; points = new Array(); // Smoothing test points.push(_points[0]); for (var i = 1, lim = _points.length - 1; i < lim; i++) { var p1 = _points[i], p2 = _points[i + 1]; if (p1.smoothen) points.push(new TV3((p1.x + p2.x) / 2, (p1.y + p2.y) / 2, (p1.z + p2.z) / 2)); else points.push(p1); } points.push(_points[_points.length - 1]); for (var i = -1, size = points.length; i <= size - 3; i++) { var p0 = points[(i == -1) ? 0 : i]; var p1 = points[i + 1], p2 = points[i + 2]; var p3 = points[(i == size - 3) ? size - 1 : i + 3]; var v0 = new TV3().sub(p2, p0).multiplyScalar(0.5); var v1 = new TV3().sub(p3, p1).multiplyScalar(0.5); for (var j = 0; j < DIV; j++) { var t = 1.0 / DIV * j; var x = p1.x + t * v0.x + t * t * (-3 * p1.x + 3 * p2.x - 2 * v0.x - v1.x) + t * t * t * (2 * p1.x - 2 * p2.x + v0.x + v1.x); var y = p1.y + t * v0.y + t * t * (-3 * p1.y + 3 * p2.y - 2 * v0.y - v1.y) + t * t * t * (2 * p1.y - 2 * p2.y + v0.y + v1.y); var z = p1.z + t * v0.z + t * t * (-3 * p1.z + 3 * p2.z - 2 * v0.z - v1.z) + t * t * t * (2 * p1.z - 2 * p2.z + v0.z + v1.z); ret.push(new TV3(x, y, z)); } } ret.push(points[points.length - 1]); return ret; }; GLmol.prototype.drawAtomsAsSphere = function(group, atomlist, defaultRadius, forceDefault, scale) { var sphereGeometry = new THREE.SphereGeometry(1, this.sphereQuality, this.sphereQuality); // r, seg, ring for (var i = 0; i < atomlist.length; i++) { var atom = this.atoms[atomlist[i]]; if (atom == undefined) continue; var sphereMaterial = new THREE.MeshLambertMaterial({color: atom.color}); var sphere = new THREE.Mesh(sphereGeometry, sphereMaterial); group.add(sphere); var r = (!forceDefault && this.vdwRadii[atom.elem] != undefined) ? this.vdwRadii[atom.elem] : defaultRadius; if (!forceDefault && scale) r *= scale; sphere.scale.x = sphere.scale.y = sphere.scale.z = r; sphere.position.x = atom.x; sphere.position.y = atom.y; sphere.position.z = atom.z; } }; // about two times faster than sphere when div = 2 GLmol.prototype.drawAtomsAsIcosahedron = function(group, atomlist, defaultRadius, forceDefault) { var geo = this.IcosahedronGeometry(); for (var i = 0; i < atomlist.length; i++) { var atom = this.atoms[atomlist[i]]; if (atom == undefined) continue; var mat = new THREE.MeshLambertMaterial({color: atom.color}); var sphere = new THREE.Mesh(geo, mat); sphere.scale.x = sphere.scale.y = sphere.scale.z = (!forceDefault && this.vdwRadii[atom.elem] != undefined) ? this.vdwRadii[atom.elem] : defaultRadius; group.add(sphere); sphere.position.x = atom.x; sphere.position.y = atom.y; sphere.position.z = atom.z; } }; GLmol.prototype.isConnected = function(atom1, atom2) { var s = atom1.bonds.indexOf(atom2.serial); if (s != -1) return atom1.bondOrder[s]; if (this.protein.smallMolecule && (atom1.hetflag || atom2.hetflag)) return 0; // CHECK: or should I ? var distSquared = (atom1.x - atom2.x) * (atom1.x - atom2.x) + (atom1.y - atom2.y) * (atom1.y - atom2.y) + (atom1.z - atom2.z) * (atom1.z - atom2.z); // if (atom1.altLoc != atom2.altLoc) return false; if (isNaN(distSquared)) return 0; if (distSquared < 0.5) return 0; // maybe duplicate position. if (distSquared > 1.3 && (atom1.elem == 'H' || atom2.elem == 'H' || atom1.elem == 'D' || atom2.elem == 'D')) return 0; if (distSquared < 3.42 && (atom1.elem == 'S' || atom2.elem == 'S')) return 1; if (distSquared > 2.78) return 0; return 1; }; GLmol.prototype.drawBondAsStickSub = function(group, atom1, atom2, bondR, order) { var delta, tmp; if (order > 1) delta = this.calcBondDelta(atom1, atom2, bondR * 2.3); var p1 = new TV3(atom1.x, atom1.y, atom1.z); var p2 = new TV3(atom2.x, atom2.y, atom2.z); var mp = p1.clone().addSelf(p2).multiplyScalar(0.5); var c1 = new TCo(atom1.color), c2 = new TCo(atom2.color); if (order == 1 || order == 3) { this.drawCylinder(group, p1, mp, bondR, atom1.color); this.drawCylinder(group, p2, mp, bondR, atom2.color); } if (order > 1) { tmp = mp.clone().addSelf(delta); this.drawCylinder(group, p1.clone().addSelf(delta), tmp, bondR, atom1.color); this.drawCylinder(group, p2.clone().addSelf(delta), tmp, bondR, atom2.color); tmp = mp.clone().subSelf(delta); this.drawCylinder(group, p1.clone().subSelf(delta), tmp, bondR, atom1.color); this.drawCylinder(group, p2.clone().subSelf(delta), tmp, bondR, atom2.color); } }; GLmol.prototype.drawBondsAsStick = function(group, atomlist, bondR, atomR, ignoreNonbonded, multipleBonds, scale) { var sphereGeometry = new THREE.SphereGeometry(1, this.sphereQuality, this.sphereQuality); var nAtoms = atomlist.length, mp; var forSpheres = []; if (!!multipleBonds) bondR /= 2.5; for (var _i = 0; _i < nAtoms; _i++) { var i = atomlist[_i]; var atom1 = this.atoms[i]; if (atom1 == undefined) continue; for (var _j = _i + 1; _j < _i + 30 && _j < nAtoms; _j++) { var j = atomlist[_j]; var atom2 = this.atoms[j]; if (atom2 == undefined) continue; var order = this.isConnected(atom1, atom2); if (order == 0) continue; atom1.connected = atom2.connected = true; this.drawBondAsStickSub(group, atom1, atom2, bondR, (!!multipleBonds) ? order : 1); } for (var _j = 0; _j < atom1.bonds.length; _j++) { var j = atom1.bonds[_j]; if (j < i + 30) continue; // be conservative! if (atomlist.indexOf(j) == -1) continue; var atom2 = this.atoms[j]; if (atom2 == undefined) continue; atom1.connected = atom2.connected = true; this.drawBondAsStickSub(group, atom1, atom2, bondR, (!!multipleBonds) ? atom1.bondOrder[_j] : 1); } if (atom1.connected) forSpheres.push(i); } this.drawAtomsAsSphere(group, forSpheres, atomR, !scale, scale); }; GLmol.prototype.defineCell = function() { var p = this.protein; if (p.a == undefined) return; p.ax = p.a; p.ay = 0; p.az = 0; p.bx = p.b * Math.cos(Math.PI / 180.0 * p.gamma); p.by = p.b * Math.sin(Math.PI / 180.0 * p.gamma); p.bz = 0; p.cx = p.c * Math.cos(Math.PI / 180.0 * p.beta); p.cy = p.c * (Math.cos(Math.PI / 180.0 * p.alpha) - Math.cos(Math.PI / 180.0 * p.gamma) * Math.cos(Math.PI / 180.0 * p.beta) / Math.sin(Math.PI / 180.0 * p.gamma)); p.cz = Math.sqrt(p.c * p.c * Math.sin(Math.PI / 180.0 * p.beta) * Math.sin(Math.PI / 180.0 * p.beta) - p.cy * p.cy); }; GLmol.prototype.drawUnitcell = function(group) { var p = this.protein; if (p.a == undefined) return; var vertices = [[0, 0, 0], [p.ax, p.ay, p.az], [p.bx, p.by, p.bz], [p.ax + p.bx, p.ay + p.by, p.az + p.bz], [p.cx, p.cy, p.cz], [p.cx + p.ax, p.cy + p.ay, p.cz + p.az], [p.cx + p.bx, p.cy + p.by, p.cz + p.bz], [p.cx + p.ax + p.bx, p.cy + p.ay + p.by, p.cz + p.az + p.bz]]; var edges = [0, 1, 0, 2, 1, 3, 2, 3, 4, 5, 4, 6, 5, 7, 6, 7, 0, 4, 1, 5, 2, 6, 3, 7]; var geo = new THREE.Geometry(); for (var i = 0; i < edges.length; i++) { geo.vertices.push(new TV3(vertices[edges[i]][0], vertices[edges[i]][1], vertices[edges[i]][2])); } var lineMaterial = new THREE.LineBasicMaterial({linewidth: 1, color: 0xcccccc}); var line = new THREE.Line(geo, lineMaterial); line.type = THREE.LinePieces; group.add(line); }; // TODO: Find inner side of a ring GLmol.prototype.calcBondDelta = function(atom1, atom2, sep) { var dot; var axis = new TV3(atom1.x - atom2.x, atom1.y - atom2.y, atom1.z - atom2.z).normalize(); var found = null; for (var i = 0; i < atom1.bonds.length && !found; i++) { var atom = this.atoms[atom1.bonds[i]]; if (!atom) continue; if (atom.serial != atom2.serial && atom.elem != 'H') found = atom; } for (var i = 0; i < atom2.bonds.length && !found; i++) { var atom = this.atoms[atom2.bonds[i]]; if (!atom) continue; if (atom.serial != atom1.serial && atom.elem != 'H') found = atom; } if (found) { var tmp = new TV3(atom1.x - found.x, atom1.y - found.y, atom1.z - found.z).normalize(); dot = tmp.dot(axis); delta = new TV3(tmp.x - axis.x * dot, tmp.y - axis.y * dot, tmp.z - axis.z * dot); } if (!found || Math.abs(dot - 1) < 0.001 || Math.abs(dot + 1) < 0.001) { if (axis.x < 0.01 && axis.y < 0.01) { delta = new TV3(0, -axis.z, axis.y); } else { delta = new TV3(-axis.y, axis.x, 0); } } delta.normalize().multiplyScalar(sep); return delta; }; GLmol.prototype.drawBondsAsLineSub = function(geo, atom1, atom2, order) { var delta, tmp, vs = geo.vertices, cs = geo.colors; if (order > 1) delta = this.calcBondDelta(atom1, atom2, 0.15); var p1 = new TV3(atom1.x, atom1.y, atom1.z); var p2 = new TV3(atom2.x, atom2.y, atom2.z); var mp = p1.clone().addSelf(p2).multiplyScalar(0.5); var c1 = new TCo(atom1.color), c2 = new TCo(atom2.color); if (order == 1 || order == 3) { vs.push(p1); cs.push(c1); vs.push(mp); cs.push(c1); vs.push(p2); cs.push(c2); vs.push(mp); cs.push(c2); } if (order > 1) { vs.push(p1.clone().addSelf(delta)); cs.push(c1); vs.push(tmp = mp.clone().addSelf(delta)); cs.push(c1); vs.push(p2.clone().addSelf(delta)); cs.push(c2); vs.push(tmp); cs.push(c2); vs.push(p1.clone().subSelf(delta)); cs.push(c1); vs.push(tmp = mp.clone().subSelf(delta)); cs.push(c1); vs.push(p2.clone().subSelf(delta)); cs.push(c2); vs.push(tmp); cs.push(c2); } }; GLmol.prototype.drawBondsAsLine = function(group, atomlist, lineWidth) { var geo = new THREE.Geometry(); var nAtoms = atomlist.length; for (var _i = 0; _i < nAtoms; _i++) { var i = atomlist[_i]; var atom1 = this.atoms[i]; if (atom1 == undefined) continue; for (var _j = _i + 1; _j < _i + 30 && _j < nAtoms; _j++) { var j = atomlist[_j]; var atom2 = this.atoms[j]; if (atom2 == undefined) continue; var order = this.isConnected(atom1, atom2); if (order == 0) continue; this.drawBondsAsLineSub(geo, atom1, atom2, order); } for (var _j = 0; _j < atom1.bonds.length; _j++) { var j = atom1.bonds[_j]; if (j < i + 30) continue; // be conservative! if (atomlist.indexOf(j) == -1) continue; var atom2 = this.atoms[j]; if (atom2 == undefined) continue; this.drawBondsAsLineSub(geo, atom1, atom2, atom1.bondOrder[_j]); } } var lineMaterial = new THREE.LineBasicMaterial({linewidth: lineWidth}); lineMaterial.vertexColors = true; var line = new THREE.Line(geo, lineMaterial); line.type = THREE.LinePieces; group.add(line); }; GLmol.prototype.drawSmoothCurve = function(group, _points, width, colors, div) { if (_points.length == 0) return; div = (div == undefined) ? 5 : div; var geo = new THREE.Geometry(); var points = this.subdivide(_points, div); for (var i = 0; i < points.length; i++) { geo.vertices.push(points[i]); geo.colors.push(new TCo(colors[(i == 0) ? 0 : Math.round((i - 1) / div)])); } var lineMaterial = new THREE.LineBasicMaterial({linewidth: width}); lineMaterial.vertexColors = true; var line = new THREE.Line(geo, lineMaterial); line.type = THREE.LineStrip; group.add(line); }; GLmol.prototype.drawAsCross = function(group, atomlist, delta) { var geo = new THREE.Geometry(); var points = [[delta, 0, 0], [-delta, 0, 0], [0, delta, 0], [0, -delta, 0], [0, 0, delta], [0, 0, -delta]]; for (var i = 0, lim = atomlist.length; i < lim; i++) { var atom = this.atoms[atomlist[i]]; if (atom == undefined) continue; var c = new TCo(atom.color); for (var j = 0; j < 6; j++) { geo.vertices.push(new TV3(atom.x + points[j][0], atom.y + points[j][1], atom.z + points[j][2])); geo.colors.push(c); } } var lineMaterial = new THREE.LineBasicMaterial({linewidth: this.lineWidth}); lineMaterial.vertexColors = true; var line = new THREE.Line(geo, lineMaterial, THREE.LinePieces); group.add(line); }; // FIXME: Winkled... GLmol.prototype.drawSmoothTube = function(group, _points, colors, radii) { if (_points.length < 2) return; var circleDiv = this.tubeDIV, axisDiv = this.axisDIV; var geo = new THREE.Geometry(); var points = this.subdivide(_points, axisDiv); var prevAxis1 = new TV3(), prevAxis2; for (var i = 0, lim = points.length; i < lim; i++) { var r, idx = (i - 1) / axisDiv; if (i == 0) r = radii[0]; else { if (idx % 1 == 0) r = radii[idx]; else { var floored = Math.floor(idx); var tmp = idx - floored; r = radii[floored] * tmp + radii[floored + 1] * (1 - tmp); } } var delta, axis1, axis2; if (i < lim - 1) { delta = new TV3().sub(points[i], points[i + 1]); axis1 = new TV3(0, - delta.z, delta.y).normalize().multiplyScalar(r); axis2 = new TV3().cross(delta, axis1).normalize().multiplyScalar(r); // var dir = 1, offset = 0; if (prevAxis1.dot(axis1) < 0) { axis1.negate(); axis2.negate(); //dir = -1;//offset = 2 * Math.PI / axisDiv; } prevAxis1 = axis1; prevAxis2 = axis2; } else { axis1 = prevAxis1; axis2 = prevAxis2; } for (var j = 0; j < circleDiv; j++) { var angle = 2 * Math.PI / circleDiv * j; //* dir + offset; var c = Math.cos(angle), s = Math.sin(angle); geo.vertices.push(new TV3( points[i].x + c * axis1.x + s * axis2.x, points[i].y + c * axis1.y + s * axis2.y, points[i].z + c * axis1.z + s * axis2.z)); } } var offset = 0; for (var i = 0, lim = points.length - 1; i < lim; i++) { var c = new TCo(colors[Math.round((i - 1)/ axisDiv)]); var reg = 0; var r1 = new TV3().sub(geo.vertices[offset], geo.vertices[offset + circleDiv]).lengthSq(); var r2 = new TV3().sub(geo.vertices[offset], geo.vertices[offset + circleDiv + 1]).lengthSq(); if (r1 > r2) {r1 = r2; reg = 1;}; for (var j = 0; j < circleDiv; j++) { geo.faces.push(new TF3(offset + j, offset + (j + reg) % circleDiv + circleDiv, offset + (j + 1) % circleDiv)); geo.faces.push(new TF3(offset + (j + 1) % circleDiv, offset + (j + reg) % circleDiv + circleDiv, offset + (j + reg + 1) % circleDiv + circleDiv)); geo.faces[geo.faces.length -2].color = c; geo.faces[geo.faces.length -1].color = c; } offset += circleDiv; } geo.computeFaceNormals(); geo.computeVertexNormals(false); var mat = new THREE.MeshLambertMaterial(); mat.vertexColors = THREE.FaceColors; var mesh = new THREE.Mesh(geo, mat); mesh.doubleSided = true; group.add(mesh); }; GLmol.prototype.drawMainchainCurve = function(group, atomlist, curveWidth, atomName, div) { var points = [], colors = []; var currentChain, currentResi; if (div == undefined) div = 5; for (var i in atomlist) { var atom = this.atoms[atomlist[i]]; if (atom == undefined) continue; if ((atom.atom == atomName) && !atom.hetflag) { if (currentChain != atom.chain || currentResi + 1 != atom.resi) { this.drawSmoothCurve(group, points, curveWidth, colors, div); points = []; colors = []; } points.push(new TV3(atom.x, atom.y, atom.z)); colors.push(atom.color); currentChain = atom.chain; currentResi = atom.resi; } } this.drawSmoothCurve(group, points, curveWidth, colors, div); }; GLmol.prototype.drawMainchainTube = function(group, atomlist, atomName, radius) { var points = [], colors = [], radii = []; var currentChain, currentResi; for (var i in atomlist) { var atom = this.atoms[atomlist[i]]; if (atom == undefined) continue; if ((atom.atom == atomName) && !atom.hetflag) { if (currentChain != atom.chain || currentResi + 1 != atom.resi) { this.drawSmoothTube(group, points, colors, radii); points = []; colors = []; radii = []; } points.push(new TV3(atom.x, atom.y, atom.z)); if (radius == undefined) { radii.push((atom.b > 0) ? atom.b / 100 : 0.3); } else { radii.push(radius); } colors.push(atom.color); currentChain = atom.chain; currentResi = atom.resi; } } this.drawSmoothTube(group, points, colors, radii); }; GLmol.prototype.drawStrip = function(group, p1, p2, colors, div, thickness) { if ((p1.length) < 2) return; div = div || this.axisDIV; p1 = this.subdivide(p1, div); p2 = this.subdivide(p2, div); if (!thickness) return this.drawThinStrip(group, p1, p2, colors, div); var geo = new THREE.Geometry(); var vs = geo.vertices, fs = geo.faces; var axis, p1v, p2v, a1v, a2v; for (var i = 0, lim = p1.length; i < lim; i++) { vs.push(p1v = p1[i]); // 0 vs.push(p1v); // 1 vs.push(p2v = p2[i]); // 2 vs.push(p2v); // 3 if (i < lim - 1) { var toNext = p1[i + 1].clone().subSelf(p1[i]); var toSide = p2[i].clone().subSelf(p1[i]); axis = toSide.crossSelf(toNext).normalize().multiplyScalar(thickness); } vs.push(a1v = p1[i].clone().addSelf(axis)); // 4 vs.push(a1v); // 5 vs.push(a2v = p2[i].clone().addSelf(axis)); // 6 vs.push(a2v); // 7 } var faces = [[0, 2, -6, -8], [-4, -2, 6, 4], [7, 3, -5, -1], [-3, -7, 1, 5]]; for (var i = 1, lim = p1.length; i < lim; i++) { var offset = 8 * i, color = new TCo(colors[Math.round((i - 1)/ div)]); for (var j = 0; j < 4; j++) { var f = new THREE.Face4(offset + faces[j][0], offset + faces[j][1], offset + faces[j][2], offset + faces[j][3], undefined, color); fs.push(f); } } var vsize = vs.length - 8; // Cap for (var i = 0; i < 4; i++) {vs.push(vs[i * 2]); vs.push(vs[vsize + i * 2])}; vsize += 8; fs.push(new THREE.Face4(vsize, vsize + 2, vsize + 6, vsize + 4, undefined, fs[0].color)); fs.push(new THREE.Face4(vsize + 1, vsize + 5, vsize + 7, vsize + 3, undefined, fs[fs.length - 3].color)); geo.computeFaceNormals(); geo.computeVertexNormals(false); var material = new THREE.MeshLambertMaterial(); material.vertexColors = THREE.FaceColors; var mesh = new THREE.Mesh(geo, material); mesh.doubleSided = true; group.add(mesh); }; GLmol.prototype.drawThinStrip = function(group, p1, p2, colors, div) { var geo = new THREE.Geometry(); for (var i = 0, lim = p1.length; i < lim; i++) { geo.vertices.push(p1[i]); // 2i geo.vertices.push(p2[i]); // 2i + 1 } for (var i = 1, lim = p1.length; i < lim; i++) { var f = new THREE.Face4(2 * i, 2 * i + 1, 2 * i - 1, 2 * i - 2); f.color = new TCo(colors[Math.round((i - 1)/ div)]); geo.faces.push(f); } geo.computeFaceNormals(); geo.computeVertexNormals(false); var material = new THREE.MeshLambertMaterial(); material.vertexColors = THREE.FaceColors; var mesh = new THREE.Mesh(geo, material); mesh.doubleSided = true; group.add(mesh); }; GLmol.prototype.IcosahedronGeometry = function() { if (!this.icosahedron) this.icosahedron = new THREE.IcosahedronGeometry(1); return this.icosahedron; }; GLmol.prototype.drawCylinder = function(group, from, to, radius, color, cap) { if (!from || !to) return; var midpoint = new TV3().add(from, to).multiplyScalar(0.5); var color = new TCo(color); if (!this.cylinderGeometry) { this.cylinderGeometry = new THREE.CylinderGeometry(1, 1, 1, this.cylinderQuality, 1, !cap); this.cylinderGeometry.faceUvs = []; this.faceVertexUvs = []; } var cylinderMaterial = new THREE.MeshLambertMaterial({color: color.getHex()}); var cylinder = new THREE.Mesh(this.cylinderGeometry, cylinderMaterial); cylinder.position = midpoint; cylinder.lookAt(from); cylinder.updateMatrix(); cylinder.matrixAutoUpdate = false; var m = new THREE.Matrix4().makeScale(radius, radius, from.distanceTo(to)); m.rotateX(Math.PI / 2); cylinder.matrix.multiplySelf(m); group.add(cylinder); }; // FIXME: transition! GLmol.prototype.drawHelixAsCylinder = function(group, atomlist, radius) { var start = null; var currentChain, currentResi; var others = [], beta = []; for (var i in atomlist) { var atom = this.atoms[atomlist[i]]; if (atom == undefined || atom.hetflag) continue; if ((atom.ss != 'h' && atom.ss != 's') || atom.ssend || atom.ssbegin) others.push(atom.serial); if (atom.ss == 's') beta.push(atom.serial); if (atom.atom != 'CA') continue; if (atom.ss == 'h' && atom.ssend) { if (start != null) this.drawCylinder(group, new TV3(start.x, start.y, start.z), new TV3(atom.x, atom.y, atom.z), radius, atom.color, true); start = null; } currentChain = atom.chain; currentResi = atom.resi; if (start == null && atom.ss == 'h' && atom.ssbegin) start = atom; } if (start != null) this.drawCylinder(group, new TV3(start.x, start.y, start.z), new TV3(atom.x, atom.y, atom.z), radius, atom.color); this.drawMainchainTube(group, others, "CA", 0.3); this.drawStrand(group, beta, undefined, undefined, true, 0, this.helixSheetWidth, false, this.thickness * 2); }; GLmol.prototype.drawCartoon = function(group, atomlist, doNotSmoothen, thickness) { this.drawStrand(group, atomlist, 2, undefined, true, undefined, undefined, doNotSmoothen, thickness); }; GLmol.prototype.drawStrand = function(group, atomlist, num, div, fill, coilWidth, helixSheetWidth, doNotSmoothen, thickness) { num = num || this.strandDIV; div = div || this.axisDIV; coilWidth = coilWidth || this.coilWidth; doNotSmoothen == (doNotSmoothen == undefined) ? false : doNotSmoothen; helixSheetWidth = helixSheetWidth || this.helixSheetWidth; var points = []; for (var k = 0; k < num; k++) points[k] = []; var colors = []; var currentChain, currentResi, currentCA; var prevCO = null, ss=null, ssborder = false; for (var i in atomlist) { var atom = this.atoms[atomlist[i]]; if (atom == undefined) continue; if ((atom.atom == 'O' || atom.atom == 'CA') && !atom.hetflag) { if (atom.atom == 'CA') { if (currentChain != atom.chain || currentResi + 1 != atom.resi) { for (var j = 0; !thickness && j < num; j++) this.drawSmoothCurve(group, points[j], 1 ,colors, div); if (fill) this.drawStrip(group, points[0], points[num - 1], colors, div, thickness); var points = []; for (var k = 0; k < num; k++) points[k] = []; colors = []; prevCO = null; ss = null; ssborder = false; } currentCA = new TV3(atom.x, atom.y, atom.z); currentChain = atom.chain; currentResi = atom.resi; ss = atom.ss; ssborder = atom.ssstart || atom.ssend; colors.push(atom.color); } else { // O var O = new TV3(atom.x, atom.y, atom.z); O.subSelf(currentCA); O.normalize(); // can be omitted for performance O.multiplyScalar((ss == 'c') ? coilWidth : helixSheetWidth); if (prevCO != undefined && O.dot(prevCO) < 0) O.negate(); prevCO = O; for (var j = 0; j < num; j++) { var delta = -1 + 2 / (num - 1) * j; var v = new TV3(currentCA.x + prevCO.x * delta, currentCA.y + prevCO.y * delta, currentCA.z + prevCO.z * delta); if (!doNotSmoothen && ss == 's') v.smoothen = true; points[j].push(v); } } } } for (var j = 0; !thickness && j < num; j++) this.drawSmoothCurve(group, points[j], 1 ,colors, div); if (fill) this.drawStrip(group, points[0], points[num - 1], colors, div, thickness); }; GLmol.prototype.drawNucleicAcidLadderSub = function(geo, lineGeo, atoms, color) { // color.r *= 0.9; color.g *= 0.9; color.b *= 0.9; if (atoms[0] != undefined && atoms[1] != undefined && atoms[2] != undefined && atoms[3] != undefined && atoms[4] != undefined && atoms[5] != undefined) { var baseFaceId = geo.vertices.length; for (var i = 0; i <= 5; i++) geo.vertices.push(atoms[i]); geo.faces.push(new TF3(baseFaceId, baseFaceId + 1, baseFaceId + 2)); geo.faces.push(new TF3(baseFaceId, baseFaceId + 2, baseFaceId + 3)); geo.faces.push(new TF3(baseFaceId, baseFaceId + 3, baseFaceId + 4)); geo.faces.push(new TF3(baseFaceId, baseFaceId + 4, baseFaceId + 5)); for (var j = geo.faces.length - 4, lim = geo.faces.length; j < lim; j++) geo.faces[j].color = color; } if (atoms[4] != undefined && atoms[3] != undefined && atoms[6] != undefined && atoms[7] != undefined && atoms[8] != undefined) { var baseFaceId = geo.vertices.length; geo.vertices.push(atoms[4]); geo.vertices.push(atoms[3]); geo.vertices.push(atoms[6]); geo.vertices.push(atoms[7]); geo.vertices.push(atoms[8]); for (var i = 0; i <= 4; i++) geo.colors.push(color); geo.faces.push(new TF3(baseFaceId, baseFaceId + 1, baseFaceId + 2)); geo.faces.push(new TF3(baseFaceId, baseFaceId + 2, baseFaceId + 3)); geo.faces.push(new TF3(baseFaceId, baseFaceId + 3, baseFaceId + 4)); for (var j = geo.faces.length - 3, lim = geo.faces.length; j < lim; j++) geo.faces[j].color = color; } }; GLmol.prototype.drawNucleicAcidLadder = function(group, atomlist) { var geo = new THREE.Geometry(); var lineGeo = new THREE.Geometry(); var baseAtoms = ["N1", "C2", "N3", "C4", "C5", "C6", "N9", "C8", "N7"]; var currentChain, currentResi, currentComponent = new Array(baseAtoms.length); var color = new TCo(0xcc0000); for (var i in atomlist) { var atom = this.atoms[atomlist[i]]; if (atom == undefined || atom.hetflag) continue; if (atom.resi != currentResi || atom.chain != currentChain) { this.drawNucleicAcidLadderSub(geo, lineGeo, currentComponent, color); currentComponent = new Array(baseAtoms.length); } var pos = baseAtoms.indexOf(atom.atom); if (pos != -1) currentComponent[pos] = new TV3(atom.x, atom.y, atom.z); if (atom.atom == 'O3\'') color = new TCo(atom.color); currentResi = atom.resi; currentChain = atom.chain; } this.drawNucleicAcidLadderSub(geo, lineGeo, currentComponent, color); geo.computeFaceNormals(); var mat = new THREE.MeshLambertMaterial(); mat.vertexColors = THREE.VertexColors; var mesh = new THREE.Mesh(geo, mat); mesh.doubleSided = true; group.add(mesh); }; GLmol.prototype.drawNucleicAcidStick = function(group, atomlist) { var currentChain, currentResi, start = null, end = null; for (var i in atomlist) { var atom = this.atoms[atomlist[i]]; if (atom == undefined || atom.hetflag) continue; if (atom.resi != currentResi || atom.chain != currentChain) { if (start != null && end != null) this.drawCylinder(group, new TV3(start.x, start.y, start.z), new TV3(end.x, end.y, end.z), 0.3, start.color, true); start = null; end = null; } if (atom.atom == 'O3\'') start = atom; if (atom.resn == ' A' || atom.resn == ' G' || atom.resn == ' DA' || atom.resn == ' DG') { if (atom.atom == 'N1') end = atom; // N1(AG), N3(CTU) } else if (atom.atom == 'N3') { end = atom; } currentResi = atom.resi; currentChain = atom.chain; } if (start != null && end != null) this.drawCylinder(group, new TV3(start.x, start.y, start.z), new TV3(end.x, end.y, end.z), 0.3, start.color, true); }; GLmol.prototype.drawNucleicAcidLine = function(group, atomlist) { var currentChain, currentResi, start = null, end = null; var geo = new THREE.Geometry(); for (var i in atomlist) { var atom = this.atoms[atomlist[i]]; if (atom == undefined || atom.hetflag) continue; if (atom.resi != currentResi || atom.chain != currentChain) { if (start != null && end != null) { geo.vertices.push(new TV3(start.x, start.y, start.z)); geo.colors.push(new TCo(start.color)); geo.vertices.push(new TV3(end.x, end.y, end.z)); geo.colors.push(new TCo(start.color)); } start = null; end = null; } if (atom.atom == 'O3\'') start = atom; if (atom.resn == ' A' || atom.resn == ' G' || atom.resn == ' DA' || atom.resn == ' DG') { if (atom.atom == 'N1') end = atom; // N1(AG), N3(CTU) } else if (atom.atom == 'N3') { end = atom; } currentResi = atom.resi; currentChain = atom.chain; } if (start != null && end != null) { geo.vertices.push(new TV3(start.x, start.y, start.z)); geo.colors.push(new TCo(start.color)); geo.vertices.push(new TV3(end.x, end.y, end.z)); geo.colors.push(new TCo(start.color)); } var mat = new THREE.LineBasicMaterial({linewidth: 1, linejoin: false}); mat.linewidth = 1.5; mat.vertexColors = true; var line = new THREE.Line(geo, mat, THREE.LinePieces); group.add(line); }; GLmol.prototype.drawCartoonNucleicAcid = function(group, atomlist, div, thickness) { this.drawStrandNucleicAcid(group, atomlist, 2, div, true, undefined, thickness); }; GLmol.prototype.drawStrandNucleicAcid = function(group, atomlist, num, div, fill, nucleicAcidWidth, thickness) { nucleicAcidWidth = nucleicAcidWidth || this.nucleicAcidWidth; div = div || this.axisDIV; num = num || this.nucleicAcidStrandDIV; var points = []; for (var k = 0; k < num; k++) points[k] = []; var colors = []; var currentChain, currentResi, currentO3; var prevOO = null; for (var i in atomlist) { var atom = this.atoms[atomlist[i]]; if (atom == undefined) continue; if ((atom.atom == 'O3\'' || atom.atom == 'OP2') && !atom.hetflag) { if (atom.atom == 'O3\'') { // to connect 3' end. FIXME: better way to do? if (currentChain != atom.chain || currentResi + 1 != atom.resi) { if (currentO3) { for (var j = 0; j < num; j++) { var delta = -1 + 2 / (num - 1) * j; points[j].push(new TV3(currentO3.x + prevOO.x * delta, currentO3.y + prevOO.y * delta, currentO3.z + prevOO.z * delta)); } } if (fill) this.drawStrip(group, points[0], points[1], colors, div, thickness); for (var j = 0; !thickness && j < num; j++) this.drawSmoothCurve(group, points[j], 1 ,colors, div); var points = []; for (var k = 0; k < num; k++) points[k] = []; colors = []; prevOO = null; } currentO3 = new TV3(atom.x, atom.y, atom.z); currentChain = atom.chain; currentResi = atom.resi; colors.push(atom.color); } else { // OP2 if (!currentO3) {prevOO = null; continue;} // for 5' phosphate (e.g. 3QX3) var O = new TV3(atom.x, atom.y, atom.z); O.subSelf(currentO3); O.normalize().multiplyScalar(nucleicAcidWidth); // TODO: refactor if (prevOO != undefined && O.dot(prevOO) < 0) { O.negate(); } prevOO = O; for (var j = 0; j < num; j++) { var delta = -1 + 2 / (num - 1) * j; points[j].push(new TV3(currentO3.x + prevOO.x * delta, currentO3.y + prevOO.y * delta, currentO3.z + prevOO.z * delta)); } currentO3 = null; } } } if (currentO3) { for (var j = 0; j < num; j++) { var delta = -1 + 2 / (num - 1) * j; points[j].push(new TV3(currentO3.x + prevOO.x * delta, currentO3.y + prevOO.y * delta, currentO3.z + prevOO.z * delta)); } } if (fill) this.drawStrip(group, points[0], points[1], colors, div, thickness); for (var j = 0; !thickness && j < num; j++) this.drawSmoothCurve(group, points[j], 1 ,colors, div); }; GLmol.prototype.drawDottedLines = function(group, points, color) { var geo = new THREE.Geometry(); var step = 0.3; for (var i = 0, lim = Math.floor(points.length / 2); i < lim; i++) { var p1 = points[2 * i], p2 = points[2 * i + 1]; var delta = p2.clone().subSelf(p1); var dist = delta.length(); delta.normalize().multiplyScalar(step); var jlim = Math.floor(dist / step); for (var j = 0; j < jlim; j++) { var p = new TV3(p1.x + delta.x * j, p1.y + delta.y * j, p1.z + delta.z * j); geo.vertices.push(p); } if (jlim % 2 == 1) geo.vertices.push(p2); } var mat = new THREE.LineBasicMaterial({'color': color.getHex()}); mat.linewidth = 2; var line = new THREE.Line(geo, mat, THREE.LinePieces); group.add(line); }; GLmol.prototype.getAllAtoms = function() { var ret = []; for (var i in this.atoms) { ret.push(this.atoms[i].serial); } return ret; }; // Probably I can refactor using higher-order functions. GLmol.prototype.getHetatms = function(atomlist) { var ret = []; for (var i in atomlist) { var atom = this.atoms[atomlist[i]]; if (atom == undefined) continue; if (atom.hetflag) ret.push(atom.serial); } return ret; }; GLmol.prototype.removeSolvents = function(atomlist) { var ret = []; for (var i in atomlist) { var atom = this.atoms[atomlist[i]]; if (atom == undefined) continue; if (atom.resn != 'HOH') ret.push(atom.serial); } return ret; }; GLmol.prototype.getProteins = function(atomlist) { var ret = []; for (var i in atomlist) { var atom = this.atoms[atomlist[i]]; if (atom == undefined) continue; if (!atom.hetflag) ret.push(atom.serial); } return ret; }; // TODO: Test GLmol.prototype.excludeAtoms = function(atomlist, deleteList) { var ret = []; var blackList = new Object(); for (var _i in deleteList) blackList[deleteList[_i]] = true; for (var _i in atomlist) { var i = atomlist[_i]; if (!blackList[i]) ret.push(i); } return ret; }; GLmol.prototype.getSidechains = function(atomlist) { var ret = []; for (var i in atomlist) { var atom = this.atoms[atomlist[i]]; if (atom == undefined) continue; if (atom.hetflag) continue; if (atom.atom == 'C' || atom.atom == 'O' || (atom.atom == 'N' && atom.resn != "PRO")) continue; ret.push(atom.serial); } return ret; }; GLmol.prototype.getAtomsWithin = function(atomlist, extent) { var ret = []; for (var i in atomlist) { var atom = this.atoms[atomlist[i]]; if (atom == undefined) continue; if (atom.x < extent[0][0] || atom.x > extent[1][0]) continue; if (atom.y < extent[0][1] || atom.y > extent[1][1]) continue; if (atom.z < extent[0][2] || atom.z > extent[1][2]) continue; ret.push(atom.serial); } return ret; }; GLmol.prototype.getExtent = function(atomlist) { var xmin = ymin = zmin = 9999; var xmax = ymax = zmax = -9999; var xsum = ysum = zsum = cnt = 0; for (var i in atomlist) { var atom = this.atoms[atomlist[i]]; if (atom == undefined) continue; cnt++; xsum += atom.x; ysum += atom.y; zsum += atom.z; xmin = (xmin < atom.x) ? xmin : atom.x; ymin = (ymin < atom.y) ? ymin : atom.y; zmin = (zmin < atom.z) ? zmin : atom.z; xmax = (xmax > atom.x) ? xmax : atom.x; ymax = (ymax > atom.y) ? ymax : atom.y; zmax = (zmax > atom.z) ? zmax : atom.z; } return [[xmin, ymin, zmin], [xmax, ymax, zmax], [xsum / cnt, ysum / cnt, zsum / cnt]]; }; GLmol.prototype.getResiduesById = function(atomlist, resi) { var ret = []; for (var i in atomlist) { var atom = this.atoms[atomlist[i]]; if (atom == undefined) continue; if (resi.indexOf(atom.resi) != -1) ret.push(atom.serial); } return ret; }; GLmol.prototype.getResidueBySS = function(atomlist, ss) { var ret = []; for (var i in atomlist) { var atom = this.atoms[atomlist[i]]; if (atom == undefined) continue; if (ss.indexOf(atom.ss) != -1) ret.push(atom.serial); } return ret; }; GLmol.prototype.getChain = function(atomlist, chain) { var ret = [], chains = {}; chain = chain.toString(); // concat if Array for (var i = 0, lim = chain.length; i < lim; i++) chains[chain.substr(i, 1)] = true; for (var i in atomlist) { var atom = this.atoms[atomlist[i]]; if (atom == undefined) continue; if (chains[atom.chain]) ret.push(atom.serial); } return ret; }; // for HETATM only GLmol.prototype.getNonbonded = function(atomlist, chain) { var ret = []; for (var i in atomlist) { var atom = this.atoms[atomlist[i]]; if (atom == undefined) continue; if (atom.hetflag && atom.bonds.length == 0) ret.push(atom.serial); } return ret; }; GLmol.prototype.colorByAtom = function(atomlist, colors) { for (var i in atomlist) { var atom = this.atoms[atomlist[i]]; if (atom == undefined) continue; var c = colors[atom.elem]; if (c == undefined) c = this.ElementColors[atom.elem]; if (c == undefined) c = this.defaultColor; atom.color = c; } }; // MEMO: Color only CA. maybe I should add atom.cartoonColor. GLmol.prototype.colorByStructure = function(atomlist, helixColor, sheetColor, colorSidechains) { for (var i in atomlist) { var atom = this.atoms[atomlist[i]]; if (atom == undefined) continue; if (!colorSidechains && (atom.atom != 'CA' || atom.hetflag)) continue; if (atom.ss[0] == 's') atom.color = sheetColor; else if (atom.ss[0] == 'h') atom.color = helixColor; } }; GLmol.prototype.colorByBFactor = function(atomlist, colorSidechains) { var minB = 1000, maxB = -1000; for (var i in atomlist) { var atom = this.atoms[atomlist[i]]; if (atom == undefined) continue; if (atom.hetflag) continue; if (colorSidechains || atom.atom == 'CA' || atom.atom == 'O3\'') { if (minB > atom.b) minB = atom.b; if (maxB < atom.b) maxB = atom.b; } } var mid = (maxB + minB) / 2; var range = (maxB - minB) / 2; if (range < 0.01 && range > -0.01) return; for (var i in atomlist) { var atom = this.atoms[atomlist[i]]; if (atom == undefined) continue; if (atom.hetflag) continue; if (colorSidechains || atom.atom == 'CA' || atom.atom == 'O3\'') { var color = new TCo(0); if (atom.b < mid) color.setHSV(0.667, (mid - atom.b) / range, 1); else color.setHSV(0, (atom.b - mid) / range, 1); atom.color = color.getHex(); } } }; GLmol.prototype.colorByChain = function(atomlist, colorSidechains) { for (var i in atomlist) { var atom = this.atoms[atomlist[i]]; if (atom == undefined) continue; if (atom.hetflag) continue; if (colorSidechains || atom.atom == 'CA' || atom.atom == 'O3\'') { var color = new TCo(0); color.setHSV((atom.chain.charCodeAt(0) * 5) % 17 / 17.0, 1, 0.9); atom.color = color.getHex(); } } }; GLmol.prototype.colorByResidue = function(atomlist, residueColors) { for (var i in atomlist) { var atom = this.atoms[atomlist[i]]; if (atom == undefined) continue; c = residueColors[atom.resn] if (c != undefined) atom.color = c; } }; GLmol.prototype.colorAtoms = function(atomlist, c) { for (var i in atomlist) { var atom = this.atoms[atomlist[i]]; if (atom == undefined) continue; atom.color = c; } }; GLmol.prototype.colorByPolarity = function(atomlist, polar, nonpolar) { var polarResidues = ['ARG', 'HIS', 'LYS', 'ASP', 'GLU', 'SER', 'THR', 'ASN', 'GLN', 'CYS']; var nonPolarResidues = ['GLY', 'PRO', 'ALA', 'VAL', 'LEU', 'ILE', 'MET', 'PHE', 'TYR', 'TRP']; var colorMap = {}; for (var i in polarResidues) colorMap[polarResidues[i]] = polar; for (i in nonPolarResidues) colorMap[nonPolarResidues[i]] = nonpolar; this.colorByResidue(atomlist, colorMap); }; // TODO: Add near(atomlist, neighbor, distanceCutoff) // TODO: Add expandToResidue(atomlist) GLmol.prototype.colorChainbow = function(atomlist, colorSidechains) { var cnt = 0; var atom, i; for (i in atomlist) { atom = this.atoms[atomlist[i]]; if (atom == undefined) continue; if ((colorSidechains || atom.atom != 'CA' || atom.atom != 'O3\'') && !atom.hetflag) cnt++; } var total = cnt; cnt = 0; for (i in atomlist) { atom = this.atoms[atomlist[i]]; if (atom == undefined) continue; if ((colorSidechains || atom.atom != 'CA' || atom.atom != 'O3\'') && !atom.hetflag) { var color = new TCo(0); color.setHSV(240.0 / 360 * (1 - cnt / total), 1, 0.9); atom.color = color.getHex(); cnt++; } } }; GLmol.prototype.drawSymmetryMates2 = function(group, asu, matrices) { if (matrices == undefined) return; asu.matrixAutoUpdate = false; var cnt = 1; this.protein.appliedMatrix = new THREE.Matrix4(); for (var i = 0; i < matrices.length; i++) { var mat = matrices[i]; if (mat == undefined || mat.isIdentity()) continue; console.log(mat); var symmetryMate = THREE.SceneUtils.cloneObject(asu); symmetryMate.matrix = mat; group.add(symmetryMate); for (var j = 0; j < 16; j++) this.protein.appliedMatrix.elements[j] += mat.elements[j]; cnt++; } this.protein.appliedMatrix.multiplyScalar(cnt); }; GLmol.prototype.drawSymmetryMatesWithTranslation2 = function(group, asu, matrices) { if (matrices == undefined) return; var p = this.protein; asu.matrixAutoUpdate = false; for (var i = 0; i < matrices.length; i++) { var mat = matrices[i]; if (mat == undefined) continue; for (var a = -1; a <=0; a++) { for (var b = -1; b <= 0; b++) { for (var c = -1; c <= 0; c++) { var translationMat = new THREE.Matrix4().makeTranslation( p.ax * a + p.bx * b + p.cx * c, p.ay * a + p.by * b + p.cy * c, p.az * a + p.bz * b + p.cz * c); var symop = mat.clone().multiplySelf(translationMat); if (symop.isIdentity()) continue; var symmetryMate = THREE.SceneUtils.cloneObject(asu); symmetryMate.matrix = symop; group.add(symmetryMate); } } } } }; GLmol.prototype.defineRepresentation = function() { var all = this.getAllAtoms(); var hetatm = this.removeSolvents(this.getHetatms(all)); this.colorByAtom(all, {}); this.colorByChain(all); this.drawAtomsAsSphere(this.modelGroup, hetatm, this.sphereRadius); this.drawMainchainCurve(this.modelGroup, all, this.curveWidth, 'P'); this.drawCartoon(this.modelGroup, all, this.curveWidth); }; GLmol.prototype.getView = function() { if (!this.modelGroup) return [0, 0, 0, 0, 0, 0, 0, 1]; var pos = this.modelGroup.position; var q = this.rotationGroup.quaternion; return [pos.x, pos.y, pos.z, this.rotationGroup.position.z, q.x, q.y, q.z, q.w]; }; GLmol.prototype.setView = function(arg) { if (!this.modelGroup || !this.rotationGroup) return; this.modelGroup.position.x = arg[0]; this.modelGroup.position.y = arg[1]; this.modelGroup.position.z = arg[2]; this.rotationGroup.position.z = arg[3]; this.rotationGroup.quaternion.x = arg[4]; this.rotationGroup.quaternion.y = arg[5]; this.rotationGroup.quaternion.z = arg[6]; this.rotationGroup.quaternion.w = arg[7]; this.show(); }; GLmol.prototype.setBackground = function(hex, a) { a = a | 1.0; this.bgColor = hex; this.renderer.setClearColorHex(hex, a); this.scene.fog.color = new TCo(hex); }; GLmol.prototype.initializeScene = function() { // CHECK: Should I explicitly call scene.deallocateObject? this.scene = new THREE.Scene(); this.scene.fog = new THREE.Fog(this.bgColor, 100, 200); this.modelGroup = new THREE.Object3D(); this.rotationGroup = new THREE.Object3D(); this.rotationGroup.useQuaternion = true; this.rotationGroup.quaternion = new THREE.Quaternion(1, 0, 0, 0); this.rotationGroup.add(this.modelGroup); this.scene.add(this.rotationGroup); this.setupLights(this.scene); }; GLmol.prototype.zoomInto = function(atomlist, keepSlab) { var tmp = this.getExtent(atomlist); var center = new TV3(tmp[2][0], tmp[2][1], tmp[2][2]);//(tmp[0][0] + tmp[1][0]) / 2, (tmp[0][1] + tmp[1][1]) / 2, (tmp[0][2] + tmp[1][2]) / 2); if (this.protein.appliedMatrix) {center = this.protein.appliedMatrix.multiplyVector3(center);} this.modelGroup.position = center.multiplyScalar(-1); var x = tmp[1][0] - tmp[0][0], y = tmp[1][1] - tmp[0][1], z = tmp[1][2] - tmp[0][2]; var maxD = Math.sqrt(x * x + y * y + z * z); if (maxD < 25) maxD = 25; if (!keepSlab) { this.slabNear = -maxD / 1.9; this.slabFar = maxD / 3; } this.rotationGroup.position.z = maxD * 0.35 / Math.tan(Math.PI / 180.0 * this.camera.fov / 2) - 150; this.rotationGroup.quaternion = new THREE.Quaternion(1, 0, 0, 0); }; GLmol.prototype.rebuildScene = function() { time = new Date(); var view = this.getView(); this.initializeScene(); this.defineRepresentation(); this.setView(view); console.log("builded scene in " + (+new Date() - time) + "ms"); }; GLmol.prototype.loadMolecule = function(repressZoom) { this.loadMoleculeStr(repressZoom, $('#' + this.id + '_src').val()); }; GLmol.prototype.loadMoleculeStr = function(repressZoom, source) { var time = new Date(); this.protein = {sheet: [], helix: [], biomtChains: '', biomtMatrices: [], symMat: [], pdbID: '', title: ''}; this.atoms = []; this.parsePDB2(source); if (!this.parseSDF(source)) this.parseXYZ(source); console.log("parsed in " + (+new Date() - time) + "ms"); var title = $('#' + this.id + '_pdbTitle'); var titleStr = ''; if (this.protein.pdbID != '') titleStr += '<a href="http://www.rcsb.org/pdb/explore/explore.do?structureId=' + this.protein.pdbID + '">' + this.protein.pdbID + '</a>'; if (this.protein.title != '') titleStr += '<br>' + this.protein.title; title.html(titleStr); this.rebuildScene(true); if (repressZoom == undefined || !repressZoom) this.zoomInto(this.getAllAtoms()); this.show(); }; GLmol.prototype.setSlabAndFog = function() { var center = this.rotationGroup.position.z - this.camera.position.z; if (center < 1) center = 1; this.camera.near = center + this.slabNear; if (this.camera.near < 1) this.camera.near = 1; this.camera.far = center + this.slabFar; if (this.camera.near + 1 > this.camera.far) this.camera.far = this.camera.near + 1; if (this.camera instanceof THREE.PerspectiveCamera) { this.camera.fov = this.fov; } else { this.camera.right = center * Math.tan(Math.PI / 180 * this.fov); this.camera.left = - this.camera.right; this.camera.top = this.camera.right / this.ASPECT; this.camera.bottom = - this.camera.top; } this.camera.updateProjectionMatrix(); this.scene.fog.near = this.camera.near + this.fogStart * (this.camera.far - this.camera.near); // if (this.scene.fog.near > center) this.scene.fog.near = center; this.scene.fog.far = this.camera.far; }; GLmol.prototype.enableMouse = function() { var me = this, glDOM = $(this.renderer.domElement); // TODO: Better touch panel support. // Contribution is needed as I don't own any iOS or Android device with WebGL support. glDOM.bind('mousedown touchstart', function(ev) { ev.preventDefault(); if (!me.scene) return; var x = ev.pageX, y = ev.pageY; if (ev.originalEvent.targetTouches && ev.originalEvent.targetTouches[0]) { x = ev.originalEvent.targetTouches[0].pageX; y = ev.originalEvent.targetTouches[0].pageY; } if (x == undefined) return; me.isDragging = true; me.mouseButton = ev.which; me.mouseStartX = x; me.mouseStartY = y; me.cq = me.rotationGroup.quaternion; me.cz = me.rotationGroup.position.z; me.currentModelPos = me.modelGroup.position.clone(); me.cslabNear = me.slabNear; me.cslabFar = me.slabFar; }); glDOM.bind('DOMMouseScroll mousewheel', function(ev) { // Zoom ev.preventDefault(); if (!me.scene) return; var scaleFactor = (me.rotationGroup.position.z - me.CAMERA_Z) * 0.85; if (ev.originalEvent.detail) { // Webkit me.rotationGroup.position.z += scaleFactor * ev.originalEvent.detail / 10; } else if (ev.originalEvent.wheelDelta) { // Firefox me.rotationGroup.position.z -= scaleFactor * ev.originalEvent.wheelDelta / 400; } console.log(ev.originalEvent.wheelDelta, ev.originalEvent.detail, me.rotationGroup.position.z); me.show(); }); glDOM.bind("contextmenu", function(ev) {ev.preventDefault();}); $('body').bind('mouseup touchend', function(ev) { me.isDragging = false; }); glDOM.bind('mousemove touchmove', function(ev) { // touchmove ev.preventDefault(); if (!me.scene) return; if (!me.isDragging) return; var mode = 0; var modeRadio = $('input[name=' + me.id + '_mouseMode]:checked'); if (modeRadio.length > 0) mode = parseInt(modeRadio.val()); var x = ev.pageX, y = ev.pageY; if (ev.originalEvent.targetTouches && ev.originalEvent.targetTouches[0]) { x = ev.originalEvent.targetTouches[0].pageX; y = ev.originalEvent.targetTouches[0].pageY; } if (x == undefined) return; var dx = (x - me.mouseStartX) / me.WIDTH; var dy = (y - me.mouseStartY) / me.HEIGHT; var r = Math.sqrt(dx * dx + dy * dy); if (mode == 3 || (me.mouseButton == 3 && ev.ctrlKey)) { // Slab me.slabNear = me.cslabNear + dx * 100; me.slabFar = me.cslabFar + dy * 100; } else if (mode == 2 || me.mouseButton == 3 || ev.shiftKey) { // Zoom var scaleFactor = (me.rotationGroup.position.z - me.CAMERA_Z) * 0.85; if (scaleFactor < 80) scaleFactor = 80; me.rotationGroup.position.z = me.cz - dy * scaleFactor; } else if (mode == 1 || me.mouseButton == 2 || ev.ctrlKey) { // Translate var scaleFactor = (me.rotationGroup.position.z - me.CAMERA_Z) * 0.85; if (scaleFactor < 20) scaleFactor = 20; var translationByScreen = new TV3(- dx * scaleFactor, - dy * scaleFactor, 0); var q = me.rotationGroup.quaternion; var qinv = new THREE.Quaternion(q.x, q.y, q.z, q.w).inverse().normalize(); var translation = qinv.multiplyVector3(translationByScreen); me.modelGroup.position.x = me.currentModelPos.x + translation.x; me.modelGroup.position.y = me.currentModelPos.y + translation.y; me.modelGroup.position.z = me.currentModelPos.z + translation.z; } else if ((mode == 0 || me.mouseButton == 1) && r != 0) { // Rotate var rs = Math.sin(r * Math.PI) / r; me.dq.x = Math.cos(r * Math.PI); me.dq.y = 0; me.dq.z = rs * dx; me.dq.w = rs * dy; me.rotationGroup.quaternion = new THREE.Quaternion(1, 0, 0, 0); me.rotationGroup.quaternion.multiplySelf(me.dq); me.rotationGroup.quaternion.multiplySelf(me.cq); } me.show(); }); }; GLmol.prototype.show = function() { if (!this.scene) return; var time = new Date(); this.setSlabAndFog(); this.renderer.render(this.scene, this.camera); console.log("rendered in " + (+new Date() - time) + "ms"); }; // For scripting GLmol.prototype.doFunc = function(func) { func(this); }; return GLmol; }());