spark-job/localconfig-auto-discover.yaml (32 lines of code) (raw):

# This is how many parts we split the full token range in. # Each of these splits is then compared between the clusters splits: 10000 # Number of buckets - splits / buckets should be under 100k to avoid wide partitions when storing the metadata buckets: 100 # global rate limit - this is how many q/s you think the target clusters can handle rate_limit: 10000 # optional job id - if restarting a job, set the correct job_id here to avoid re-diffing old splits # job_id: 4e2c6c6b-bed7-4c4e-bd4c-28bef89c3cef # Fetch size to use for the query fetching the tokens in the cluster token_scan_fetch_size: 1000 # Fetch size to use for the queries fetching the rows of each partition partition_read_fetch_size: 1000 read_timeout_millis: 10000 reverse_read_probability: 0.5 consistency_level: ALL metadata_options: keyspace: cassandradiff replication: "{'class':'SimpleStrategy', 'replication_factor':'1'}" ttl: 31536000 should_init: true cluster_config: source: impl: "org.apache.cassandra.diff.ContactPointsClusterProvider" name: "local_test_1" contact_points: "127.0.0.1" port: "9042" dc: "datacenter1" target: impl: "org.apache.cassandra.diff.ContactPointsClusterProvider" name: "local_test_2" contact_points: "127.0.0.1" port: "9043" dc: "datacenter1" metadata: impl: "org.apache.cassandra.diff.ContactPointsClusterProvider" name: "local_test" contact_points: "127.0.0.1" port: "9042" dc: "datacenter1"